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Abstract

Multi-modal neural machine translation
(NMT) aims to translate source sentences
into a target language paired with images.
However, dominant multi-modal NMT models
do not fully exploit fine-grained semantic
correspondences between semantic units of
different modalities, which have potential to
refine multi-modal representation learning. To
deal with this issue, in this paper, we propose
a novel graph-based multi-modal fusion en-
coder for NMT. Specifically, we first represent
the input sentence and image using a unified
multi-modal graph, which captures various
semantic relationships between multi-modal
semantic units (words and visual objects). We
then stack multiple graph-based multi-modal
fusion layers that iteratively perform semantic
interactions to learn node representations.
Finally, these representations provide an
attention-based context vector for the decoder.
We evaluate our proposed encoder on the
Multi30K datasets. Experimental results and
in-depth analysis show the superiority of our
multi-modal NMT model.

1 Introduction

Multi-modal neural machine translation (NMT)
(Huang et al., 2016; Calixto et al., 2017) has be-
come an important research direction in machine
translation, due to its research significance in multi-
modal deep learning and wide applications, such as
translating multimedia news and web product infor-
mation (Zhou et al., 2018). It significantly extends
the conventional text-based machine translation by
taking images as additional inputs. The assump-
tion behind this is that the translation is expected
to be more accurate compared to purely text-based

∗This work is done when Yongjing Yin was interning at
Pattern Recognition Center, WeChat AI, Tencent Inc, China.

†Corresponding author.

translation, since the visual context helps to resolve
ambiguous multi-sense words (Ive et al., 2019).

Apparently, how to fully exploit visual informa-
tion is one of the core issues in multi-modal NMT,
which directly impacts the model performance. To
this end, a lot of efforts have been made, roughly
consisting of: (1) encoding each input image into
a global feature vector, which can be used to ini-
tialize different components of multi-modal NMT
models, or as additional source tokens (Huang et al.,
2016; Calixto et al., 2017), or to learn the joint
multi-modal representation (Zhou et al., 2018; Cal-
ixto et al., 2019); (2) extracting object-based im-
age features to initialize the model, or supplement
source sequences, or generate attention-based vi-
sual context (Huang et al., 2016; Ive et al., 2019);
and (3) representing each image as spatial features,
which can be exploited as extra context (Calixto
et al., 2017; Delbrouck and Dupont, 2017a; Ive
et al., 2019), or a supplement to source semantics
(Delbrouck and Dupont, 2017b) via an attention
mechanism.

Despite their success, the above studies do not
fully exploit the fine-grained semantic correspon-
dences between semantic units within an input
sentence-image pair. For example, as shown in
Figure 1, the noun phrase “a toy car” semantically
corresponds to the blue dashed region. The ne-
glect of this important clue may be due to two
big challenges: 1) how to construct a unified rep-
resentation to bridge the semantic gap between
two different modalities, and 2) how to achieve
semantic interactions based on the unified repre-
sentation. However, we believe that such semantic
correspondences can be exploited to refine multi-
modal representation learning, since they enable
the representations within one modality to incorpo-
rate cross-modal information as supplement during
multi-modal semantic interactions (Lee et al., 2018;
Tan and Bansal, 2019).
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Figure 1: The multi-modal graph for an input sentence-image pair. The blue and green solid circles denote textual
nodes and visual nodes respectively. An intra-modal edge (dotted line) connects two nodes in the same modality,
and an inter-modal edge (solid line) links two nodes in different modalities. Note that we only display edges
connecting the textual node “playing” and other textual ones for simplicity.

In this paper, we propose a novel graph-based
multi-modal fusion encoder for NMT. We first rep-
resent the input sentence and image with a uni-
fied multi-modal graph. In this graph, each node
indicates a semantic unit: textual word or visual
object, and two types of edges are introduced to
model semantic relationships between semantic
units within the same modality (intra-modal edges)
and semantic correspondences between semantic
units of different modalities (inter-modal edges) re-
spectively. Based on the graph, we then stack mul-
tiple graph-based multi-modal fusion layers that
iteratively perform semantic interactions among
the nodes to conduct graph encoding. Particularly,
during this process, we distinguish the parameters
of two modalities, and sequentially conduct intra-
and inter-modal fusions to learn multi-modal node
representations. Finally, these representations can
be exploited by the decoder via an attention mech-
anism.

Compared with previous models, ours is able
to fully exploit semantic interactions among multi-
modal semantic units for NMT. Overall, the major
contributions of our work are listed as follows:

• We propose a unified graph to represent the
input sentence and image, where various se-
mantic relationships between multi-modal se-
mantic units can be captured for NMT.

• We propose a graph-based multi-modal fusion
encoder to conduct graph encoding based on
the above graph. To the best of our knowledge,
our work is the first attempt to explore multi-
modal graph neural network (GNN) for NMT.

• We conduct extensive experiments on
Multi30k datasets of two language pairs.

Experimental results and in-depth analysis
indicate that our encoder is effective to
fuse multi-modal information for NMT.
Particularly, our multi-modal NMT model
significantly outperforms several competitive
baselines.

• We release the code at https://github.com/
DeepLearnXMU/GMNMT.

2 NMT with Graph-based Multi-modal
Fusion Encoder

Our multi-modal NMT model is based on atten-
tional encoder-decoder framework with maximiz-
ing the log likelihood of training data as the objec-
tive function.

2.1 Encoder
Essentially, our encoder can be regarded as a multi-
modal extension of GNN. To construct our encoder,
we first represent the input sentence-image pair as
a unified multi-modal graph. Then, based on this
graph, we stack multiple multi-modal fusion layers
to learn node representations, which provides the
attention-based context vector to the decoder.

2.1.1 Multi-modal Graph
In this section, we take the sentence and the image
shown in Figure 1 as an example, and describe how
to use a multi-modal graph to represent them. For-
mally, our graph is undirected and can be formal-
ized as G=(V ,E), which is constructed as follows:

In the node set V , each node represents either
a textual word or a visual object. Specifically, we
adopt the following strategies to construct these two
kinds of nodes: (1) We include all words as sepa-
rate textual nodes in order to fully exploit textual
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Figure 2: The architecture of our NMT model with the graph-based multi-modal fusion encoder. Note that we
actually do not apply a Visual FFN to the last layer in the encoder.

information. For example, in Figure 1, the multi-
modal graph contains totally eight textual nodes,
each of which corresponds to a word in the input
sentence; (2) We employ the Stanford parser to
identify all noun phrases in the input sentence, and
then apply a visual grounding toolkit (Yang et al.,
2019) to detect bounding boxes (visual objects) for
each noun phrase. Subsequently, all detected visual
objects are included as independent visual nodes.
In this way, we can effectively reduce the nega-
tive impact of abundant unrelated visual objects.
Let us revisit the example in Figure 1, where we
can identify two noun phrases “Two boys” and “a
toy car” from the input sentence, and then include
three visual objects into the multi-modal graph.

To capture various semantic relationships be-
tween multi-modal semantic units for NMT, we
consider two kinds of edges in the edge set E: (1)
Any two nodes in the same modality are connected
by an intra-modal edge; and (2) Each textual node
representing any noun phrase and the correspond-
ing visual node are connected by an inter-modal
edge. Back to Figure 1, we can observe that all
visual nodes are connected to each other, and all
textual nodes are fully-connected. However, only
nodes vo1 and vx1 , vo1 and vx2 , vo2 and vx1 , vo2
and vx2 , vo3 and vx6 , vo3 and vx7 , vo3 and vx8 are
connected by inter-modal edges.

2.1.2 Embedding Layer

Before inputting the multi-modal graph into the
stacked fusion layers, we introduce an embedding

layer to initialize the node states. Specifically, for
each textual node vxi , we define its initial state
H

(0)
xi as the sum of its word embedding and position

encoding (Vaswani et al., 2017). To obtain the
initial state H(0)

oj of the visual node voj , we first
extract visual features from the fully-connected
layer that follows the ROI pooling layer in Faster-
RCNN (Ren et al., 2015), and then employ a multi-
layer perceptron with ReLU activation function to
project these features onto the same space as textual
representations.

2.1.3 Graph-based Multi-modal Fusion
Layers

As shown in the left part of Figure 2, on the top of
embedding layer, we stack Le graph-based multi-
modal fusion layers to encode the above-mentioned
multi-modal graph. At each fusion layer, we se-
quentially conduct intra- and inter-modal fusions
to update all node states. In this way, the final
node states encode both the context within the same
modality and the cross-modal semantic information
simultaneously. Particularly, since visual nodes and
textual nodes are two types of semantic units con-
taining the information of different modalities, we
apply similar operations but with different param-
eters to model their state update process, respec-
tively.

Specifically, in the l-th fusion layer, both updates
of textual node states H(l)

x ={H(l)
xi } and visual node

states H(l)
o ={H(l)

oj } mainly involve the following
steps:
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Step1: Intra-modal fusion. At this step, we
employ self-attention to generate the contextual
representation of each node by collecting the mes-
sage from its neighbors of the same modality.

Formally, the contextual representations C(l)
x of

all textual nodes are calculated as follows: 1

C(l)
x = MultiHead(H(l−1)

x ,H(l−1)
x ,H(l−1)

x ), (1)

where MultiHead(Q, K, V) is a multi-head self-
attention function taking a query matrix Q, a key
matrix K, and a value matrix V as inputs. Similarly,
we generate the contextual representations C(l)

o of
all visual nodes as

C(l)
o = MultiHead(H(l−1)

o ,H(l−1)
o ,H(l−1)

o ). (2)

In particular, since the initial representations of
visual objects are extracted from deep CNNs, we
apply a simplified multi-head self-attention to pre-
serve the initial representations of visual objects,
where the learned linear projects of values and final
outputs are removed.

Step2: Inter-modal fusion. Inspired by studies
in multi-modal feature fusion (Teney et al., 2018;
Kim et al., 2018), we apply a cross-modal gat-
ing mechanism with an element-wise operation to
gather the semantic information of the cross-modal
neighbours of each node.

Concretely, we generate the representation M (l)
xi

of a text node vxi in the following way:

M (l)
xi

=
∑

j∈A(vxi )

αi,j � C(l)
oj , (3)

αi,j = Sigmoid(W(l)
1 C

(l)
xi

+ W(l)
2 C

(l)
oj ), (4)

whereA(vxi) is the set of neighboring visual nodes
of vxi , and W(l)

1 and W(l)
2 are parameter matrices.

Likewise, we produce the representation M (l)
oj of a

visual node voj as follows:

M (l)
oj =

∑
i∈A(voj )

βj,i � C(l)
xi
, (5)

βj,i = Sigmoid(W(l)
3 C

(l)
oj + W(l)

4 C
(l)
xi
), (6)

where A(voj ) is the set of adjacent textual nodes of

voj , and W(l)
3 and W(l)

4 are also parameter matrices.
The advantage is that the above fusion approach

can better determine the degree of inter-modal fu-
sion according to the contextual representations of

1For simplicity, we omit the descriptions of layer normal-
ization and residual connection.

each modality. Finally, we adopt position-wise feed
forward networks FFN(∗) to generate the textual
node states H(l)

x and visual node states H(l)
o :

H(l)
x = FFN(M(l)

x ), (7)

H(l)
o = FFN(M(l)

o ), (8)

where M(l)
x = {M (l)

xi }, M(l)
o = {M (l)

oj } denote the
above updated representations of all textual nodes
and visual nodes respectively.

2.2 Decoder
Our decoder is similar to the conventional Trans-
former decoder. Since visual information has been
incorporated into all textual nodes via multiple
graph-based multi-modal fusion layers, we allow
the decoder to dynamically exploit the multi-modal
context by only attending to textual node states.

As shown in the right part of Figure 2, we follow
Vaswani et al. (2017) to stack Ld identical layers to
generate target-side hidden states, where each layer
l is composed of three sub-layers. Concretely, the
first two sub-layers are a masked self-attention and
an encoder-decoder attention to integrate target-
and source-side contexts respectively:

E(l) = MultiHead(S(l−1),S(l−1),S(l−1)), (9)

T(l) = MultiHead(E(l),H(Le)
x ,H(Le)

x ), (10)

where S(l−1) denotes the target-side hidden states
in the l-1-th layer. In particular, S(0) are the embed-
dings of input target words. Then, a position-wise
fully-connected forward neural network is uesd to
produce S(l) as follows:

S(l) = FFN(T(l)). (11)

Finally, the probability distribution of generating
the target sentence is defined by using a softmax
layer, which takes the hidden states in the top layer
as input:

P (Y |X, I) =
∏
t

Softmax(WS(Ld)
t + b), (12)

where X is the input sentence, I is the input im-
age, Y is the target sentence, and W and b are the
parameters of the softmax layer.

3 Experiment

We carry out experiments on multi-modal
English⇒German (En⇒De) and English⇒French
(En⇒Fr) translation tasks.
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3.1 Setup

Datasets We use the Multi30K dataset (Elliott
et al., 2016), where each image is paired with one
English description and human translations into
German and French. Training, validation and test
sets contain 29,000, 1,014 and 1,000 instances re-
spectively. In addition, we evaluate various mod-
els on the WMT17 test set and the ambiguous
MSCOCO test set, which contain 1,000 and 461
instances respectively. Here, we directly use the
preprocessed sentences 2 and segment words into
subwords via byte pair encoding (Sennrich et al.,
2016) with 10,000 merge operations.

Visual Features We first apply the Stanford
parser to identify noun phrases from each source
sentence, and then employ the visual ground toolkit
released by Yang et al. (2019) to detect associated
visual objects of the identified noun phrases. For
each phrase, we keep the visual object with the
highest prediction probability, so as to reduce nega-
tive effects of abundant visual objects. In each sen-
tence, the average numbers of objects and words
are around 3.5 and 15.0 respectively. 3 Finally,
we compute 2,048-dimensional features for these
objects with the pre-trained ResNet-100 Faster-
RCNN (Ren et al., 2015).

Settings We use Transformer (Vaswani et al.,
2017) as our baseline. Since the size of training
corpus is small and the trained model tends to be
over-fitting, we first perform a small grid search
to obtain a set of hyper-parameters on the En⇒De
validation set. Specifically, the word embedding
dimension and hidden size are 128 and 256 respec-
tively. The decoder has Ld=4 layers4 and the num-
ber of attention heads is 4. The dropout is set to 0.5.
Each batch consists of approximately 2,000 source
and target tokens. We apply the Adam optimizer
with a scheduled learning rate to optimize various
models, and we use other same settings as (Vaswani
et al., 2017). Finally, we use the metrics BLEU (Pa-
pineni et al., 2002) and METEOR (Denkowski and
Lavie, 2014) to evaluate the quality of translations.
Particularly, we run all models three times for each
experiment and report the average results.

2http://www.statmt.org/wmt18/multimodal-task.html
3There is no parsing failure for this dataset. If no noun is

detected for a sentence, the object representations will be set
to zero vectors and the model will degenerate to Transformer.

4The encoder of the text-based Transformer also has 4
layers.
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Figure 3: Results on the En⇒De validation set regard-
ing the number Le of graph-based multi-modal fusion
layers.

Baseline Models In addition to the text-based
Transformer (Vaswani et al., 2017), we adapt sev-
eral effective approaches to Transformer using our
visual features, and compare our model with them5:

• ObjectAsToken(TF) (Huang et al., 2016). It
is a variant of the Transformer, where all vi-
sual objects are regarded as extra source to-
kens and placed at the front of the input sen-
tence.
• Enc-att(TF) (Delbrouck and Dupont, 2017b).

An encoder-based image attention mecha-
nism is incorporated into Transformer, which
augments each source annotation with an
attention-based visual feature vector.
• Doubly-att(TF) (Helcl et al., 2018). It is a

doubly attentive Transformer. In each decoder
layer, a cross-modal multi-head attention sub-
layer is inserted before the fully connected
feed-forward layer to generate the visual con-
text vector from visual features.

We also display the performance of sev-
eral dominant multi-modal NMT models such
as Doubly-att(RNN) (Calixto et al., 2017),
Soft-att(RNN) (Delbrouck and Dupont, 2017a),
Stochastic-att(RNN) (Delbrouck and Dupont,
2017a), Fusion-conv(RNN) (Caglayan et al.,
2017), Trg-mul(RNN) (Caglayan et al., 2017),
VMMT(RNN) (Calixto et al., 2019) and Deliber-
ation Network(TF) (Ive et al., 2019) on the same
datasets.

3.2 Effect of Graph-based Multi-modal
Fusion Layer Number Le

The number Le of multi-modal fusion layer is an
important hyper-parameter that directly determines

5We use suffixes “(RNN)” and “(TF)” to represent RNN-
and Transformer-style NMT models, respectively.
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Model
En⇒De

Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR

Existing Multi-modal NMT Systems
Doubly-att(RNN) (Calixto et al., 2017) 36.5 55.0 - - - -
Soft-att(RNN) (Delbrouck and Dupont, 2017a) 37.6 55.3 - - - -
Stochastic-att(RNN) (Delbrouck and Dupont, 2017a) 38.2 55.4 - - - -
Fusion-conv(RNN) (Caglayan et al., 2017) 37.0 57.0 29.8 51.2 25.1 46.0
Trg-mul(RNN)(Caglayan et al., 2017) 37.8 57.7 30.7 52.2 26.4 47.4
VMMT(RNN) (Calixto et al., 2019) 37.7 56.0 30.1 49.9 25.5 44.8
Deliberation Network(TF) (Ive et al., 2019) 38.0 55.6 - - - -

Our Multi-modal NMT Systems
Transformer (Vaswani et al., 2017) 38.4 56.5 30.6 50.4 27.3 46.2
ObjectAsToken(TF) (Huang et al., 2016) 39.0 57.2 31.7 51.3 28.4 47.0
Enc-att(TF) (Delbrouck and Dupont, 2017b) 38.7 56.6 31.3 50.6 28.0 46.6
Doubly-att(TF) (Helcl et al., 2018) 38.8 56.8 31.4 50.5 27.4 46.5
Our model 39.8 57.6 32.2 51.9 28.7 47.6

Table 1: Experimental results on the En⇒De translation task.

the degree of fine-grained semantic fusion in our
encoder. Thus, we first inspect its impact on the
EN⇒DE validation set.

Figure 3 provides the experimental results using
different Le and our model achieves the best per-
formance when Le is 3. Hence, we use Le=3 in all
subsequent experiments.

3.3 Results on the En⇒De Translation Task

Table 1 shows the main results on the En⇒De trans-
lation task. Ours outperforms most of the exist-
ing models and all baselines, and is comparable
to Fusion-conv(RNN) and Trg-mul(RNN) on ME-
TEOR. The two results are from the state-of-the-art
system on the WMT2017 test set, which is selected
based on METEOR. Comparing the baseline mod-
els, we draw the following interesting conclusions:

First, our model outperforms ObjectAsTo-
ken(TF), which concatenates regional visual fea-
tures with text to form attendable sequences and
employs self-attention mechanism to conduct inter-
modal fusion. The underlying reasons consist of
two aspects: explicitly modeling semantic corre-
spondences between semantic units of different
modalities, and distinguishing model parameters
for different modalities.

Second, our model also significantly outper-
forms Enc-att(TF). Note that Enc-att(TF) can be
considered as a single-layer semantic fusion en-
coder. In addition to the advantage of explicitly
modeling semantic correspondences, we conjecture
that multi-layer multi-modal semantic interactions
are also beneficial to NMT.

Third, compared with Doubly-att(TF) simply
using an attention mechanism to exploit visual in-
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Figure 4: BLEU scores on different translation groups
divided according to source sentence lengths.
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Figure 5: BLEU scores on different translation groups
divided according to source phrase numbers.

formation, our model achieves a significant im-
provement, because of sufficient multi-modal fu-
sion in our encoder.

Besides, we divide our test sets into different
groups based on the lengths of source sentences
and the numbers of noun phrases, and then com-
pare the performance of different models in each
group. Figures 4 and 5 report the BLEU scores
on these groups. Overall, our model still consis-
tently achieves the best performance in all groups.
Thus, we confirm again the effectiveness and gen-
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Model
En⇒De

Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR

Our model 39.8 57.6 32.2 51.9 28.7 47.6
w/o inter-modal fusion 38.7 56.7 30.7 50.6 27.0 46.7
visual grounding ⇒ fully-connected 36.4 53.4 28.3 47.0 24.4 42.9
different parameters ⇒ unified parameters 39.2 57.3 31.9 51.4 27.7 47.4
w/ attending to visual nodes 39.6 57.3 32.0 51.3 27.9 46.8
attending to textual nodes ⇒ attending to visual nodes 30.9 48.6 22.3 41.5 20.4 38.7

Table 2: Ablation study of our model on the EN⇒DE translation task.

Model
En⇒Fr

Test2016 Test2017
BLEU METEOR BLEU METEOR

Existing Multi-modal NMT Systems
Fusion-conv(RNN) (Caglayan et al., 2017) 53.5 70.4 51.6 68.6
Trg-mul(RNN)(Caglayan et al., 2017) 54.7 71.3 52.7 69.5
Deliberation Network(TF) (Ive et al., 2019) 59.8 74.4 - -

Our Multi-modal NMT Systems
Transformer (Vaswani et al., 2017) 59.5 73.7 52.0 68.0
ObjectAsToken(TF) (Huang et al., 2016) 60.0 74.3 52.9 68.6
Enc-att(TF) (Delbrouck and Dupont, 2017b) 60.0 74.3 52.8 68.3
Doubly-att(TF) (Helcl et al., 2018) 59.9 74.1 52.4 68.1
Our model 60.9 74.9 53.9 69.3

Table 3: Experimental results on the En⇒Fr translation task.

Model Training Decoding Parameter
Transformer 2.6K 17.8 3.4M
ObjectAsToken(TF) 1.6K 17.2 3.7M
Enc-att(TF) 1.3K 16.9 3.6M
Doubly-att(TF) 1.0K 12.9 3.8M
Our model 1.1K 16.7 4.0M

Table 4: Training speed (tokens/second), decoding
speed (sentences/second) and the number of parame-
ters of different models on the En⇒De translation task.

erality of our proposed model. Note that in the
sentences with more phrases, which are usually
long sentences, the improvements of our model
over baselines are more significant. We speculate
that long sentences often contain more ambiguous
words. Thus compared with short sentences, long
sentences may require visual information to be bet-
ter exploited as supplementary information, which
can be achieved by the multi-modal semantic inter-
action of our model.

We also show the training and decoding speed
of our model and the baselines in Table 4. Dur-
ing training, our model can process approximately
1.1K tokens per second, which is comparable to
other multi-modal baselines. When it comes to de-
coding procedure, our model translates about 16.7
sentences per second and the speed drops slightly
compared to Transformer. Moreover, our model
only introduces a small number of extra parameters

and achieves better performance.

3.4 Ablation Study

To investigate the effectiveness of different compo-
nents, we further conduct experiments to compare
our model with the following variants in Table 2:

(1) w/o inter-modal fusion. In this variant, we
apply two separate Transformer encoders to learn
the semantic representations of words and visual
objects, respectively, and then use the doubly-
attentive decoder (Helcl et al., 2018) to incorporate
textual and visual contexts into the decoder. The
result in line 3 indicates that removing the inter-
modal fusion leads to a significant performance
drop. It suggests that semantic interactions among
multi-modal semantic units are indeed useful for
multi-modal representation learning.

(2) visual grounding ⇒ fully-connected. We
make the words and visual objects fully-connected
to establish the inter-modal correspondences. The
result in line 4 shows that this change causes a
significant performance decline. The underlying
reason is the fully-connected semantic correspon-
dences introduce much noise to our model.

(3) different parameters⇒ unified parameters.
When constructing this variant, we assign unified
parameters to update node states in different modal-
ities. Apparently, the performance drop reported
in line 5 also demonstrates the validity of our ap-
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proach using different parameters.
(4) w/ attending to visual nodes. Different from

our model attending to only textual nodes, we al-
low our decoder of this variant to consider both
two types of nodes using doubly-attentive decoder.
From line 6, we can observe that considering all
nodes does not bring further improvement. The
result confirms our previous assumption that visual
information has been fully incorporated into textual
nodes in our encoder.

(5) attending to textual nodes ⇒ attending to
visual nodes. However, when only considering
visual nodes, the model performance drops drasti-
cally (line 7). This is because the number of visual
nodes is far fewer than that of textual nodes, which
is unable to produce sufficient context for transla-
tion.

3.5 Case Study

Figure 6 displays the 1-best translations of a sam-
pled test sentence generated by different models.
The phrase “a skateboarding ramp” is not trans-
lated correctly by all baselines, while our model
correctly translates it. This reveals that our encoder
is able to learn more accurate representations.

3.6 Results on the En⇒Fr Translation Task

We also conduct experiments on the EN⇒Fr
dataset. From Table 3, our model still achieves bet-
ter performance compared to all baselines, which
demonstrates again that our model is effective and
general to different language pairs in multi-modal
NMT.

4 Related Work

Multi-modal NMT Huang et al. (2016) first in-
corporate global or regional visual features into
attention-based NMT. Calixto and Liu (2017) also
study the effects of incorporating global visual
features into different NMT components. Elliott
and Kádár (2017) share an encoder between a
translation model and an image prediction model
to learn visually grounded representations. Be-
sides, the most common practice is to use attention
mechanisms to extract visual contexts for multi-
modal NMT (Caglayan et al., 2016; Calixto et al.,
2017; Delbrouck and Dupont, 2017a,b; Barrault
et al., 2018). Recently, Ive et al. (2019) propose
a translate-and-refine approach and Calixto et al.
(2019) employ a latent variable model to capture
the multi-modal interactions for multi-modal NMT.

Apart from model design, Elliott (2018) reveal that
visual information seems to be ignored by the multi-
modal NMT models. Caglayan et al. (2019) con-
duct a systematic analysis and show that visual
information can be better leveraged under limited
textual context.

Different from the above-mentioned studies, we
first represent the input sentence-image pair as a
unified graph, where various semantic relationships
between multi-modal semantic units can be effec-
tively captured for multi-modal NMT. Benefiting
from the multi-modal graph, we further introduce
an extended GNN to conduct graph encoding via
multi-modal semantic interactions.

Note that if we directly adapt the approach pro-
posed by Huang et al. (2016) into Transformer, the
model (ObjectAsToken(TF)) also involves multi-
modal fusion. However, ours is different from it
in following aspects: (1) We first learn the contex-
tual representation of each node within the same
modality, so that it can better determine the degree
of inter-modal fusion according to its own context.
(2) We assign different encoding parameters to dif-
ferent modalities, which has been shown effective
in our experiments.

Additionally, the recent study LXMERT (Tan
and Bansal, 2019) also models relationships be-
tween vision and language, which differs from ours
in following aspects: (1) Tan and Bansal (2019)
first apply two transformer encoders for two modal-
ities, and then stack two cross-modality encoders
to conduct multi-modal fusion. In contrast, we se-
quentially conduct self-attention and cross-modal
gating at each layer. (2) Tan and Bansal (2019)
leverage an attention mechanism to implicitly es-
tablish cross-modal relationships via large-scale
pretraining, while we utilize visual grounding to
capture explicit cross-modal correspondences. (3)
We focus on multi-modal NMT rather than vision-
and-language reasoning in (Tan and Bansal, 2019).

Graph Neural Networks Recently, GNNs
(Marco Gori and Scarselli, 2005) including gated
graph neural network (Li et al., 2016), graph con-
volutional network (Duvenaud et al., 2015; Kipf
and Welling, 2017) and graph attention network
(Velickovic et al., 2018) have been shown effective
in many tasks such as VQA (Teney et al., 2017;
Norcliffe-Brown et al., 2018; Li et al., 2019), text
generation (Gildea et al., 2018; Becky et al., 2018;
Song et al., 2018b, 2019) and text representation
(Zhang et al., 2018; Yin et al., 2019; Song et al.,
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Source:                         A boy riding a skateboard on a skateboarding ramp .

Reference:                   Ein junge fährt skateboard auf einer skateboardrampe .

Tranformer:                Ein junge fährt auf einem skateboard auf einer rampe .

Doubly-att(TF): Ein junge fährt mit einem skateboard auf einer rampe .

Enc-att(TF):                Ein junge fährt ein skateboard auf einer rampe .

ObjectAsToken(TF):  Ein junge fährt auf einem skateboard auf einer rampe .

Our model:                  Ein junge fährt auf einem skateboard auf einer skateboardrampe . 

Figure 6: A translation example of different multi-modal NMT models. The baseline models do not accurately
understand the phrase “a skateboarding ramp” (orange), while our model correctly translate it.

2018a; Xue et al., 2019).
In this work, we mainly focus on how to extend

GNN to fuse multi-modal information in NMT.
Close to our work, Teney et al. (2017) introduce
GNN for VQA. The main difference between their
work and ours is that they build an individual graph
for each modality, while we use a unified multi-
modal graph.

5 Conclusion

In this paper, we have proposed a novel graph-
based multi-modal fusion encoder, which ex-
ploits various semantic relationships between multi-
modal semantic units for NMT. Experiment results
and analysis on the Multi30K dataset demonstrate
the effectiveness of our model.

In the future, we plan to incorporate attributes
of visual objects and dependency trees to enrich
the multi-modal graphs. Besides, how to introduce
scene graphs into multi-modal NMT is a worthy
problem to explore. Finally, we will apply our
model into other multi-modal tasks such as multi-
modal sentiment analysis.
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