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Abstract

We optimize rewards of reinforcement learn-
ing in text simplification using metrics that are
highly correlated with human-perspectives. To
address problems of exposure bias and loss-
evaluation mismatch, text-to-text generation
tasks employ reinforcement learning that re-
wards task-specific metrics. Previous studies
in text simplification employ the weighted sum
of sub-rewards from three perspectives: gram-
maticality, meaning preservation, and simplic-
ity. However, the previous rewards do not
align with human-perspectives for these per-
spectives. In this study, we propose to use
BERT regressors fine-tuned for grammatical-
ity, meaning preservation, and simplicity as re-
ward estimators to achieve text simplification
conforming to human-perspectives. Experi-
mental results show that reinforcement learn-
ing with our rewards balances meaning preser-
vation and simplicity. Additionally, human
evaluation confirmed that simplified texts by
our method are preferred by humans compared
to previous studies.

1 Introduction

Text simplification is one of the text-to-text gen-
eration tasks that rewrites complex sentences into
simpler ones. Text simplification is useful for pre-
processing of NLP tasks such as semantic role la-
beling (Vickrey and Koller, 2008; Woodsend and
Lapata, 2014) and machine translation (Štajner and
Popović, 2016, 2018). It also has valuable applica-
tions such as assisting language learning (Inui et al.,
2003; Petersen and Ostendorf, 2007) and helping
language-impaired readers (Carroll et al., 1999).

There are two problems in text-to-text genera-
tion with an encoder-decoder model: exposure bias
and loss-evaluation mismatch (Ranzato et al., 2016;
Wiseman and Rush, 2016). The former is that the
model is not exposed to its own errors during train-
ing. The latter is that while the generated sentence
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Figure 1: Overview of the reinforcement learning for
text simplification.

is evaluated as a whole sentence during inference,
it is evaluated at the token-level during training.
To address these problems, reinforcement learning
has been employed in text-to-text generation tasks,
such as machine translation (Ranzato et al., 2016)
and abstractive summarization (Paulus et al., 2018).
These studies use metrics suitable for each task,
such as BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004), as rewards. Although reinforcement
learning based text simplification models (Zhang
and Lapata, 2017; Zhao et al., 2020) have used re-
wards metrics such as SARI (Xu et al., 2016) and
FKGL (Kincaid et al., 1975), these metrics do not
align with human-perspectives, i.e., human evalu-
ation results (Xu et al., 2016; Sulem et al., 2018;
Alva-Manchego et al., 2020).

In this study, we train a text simplification model
based on reinforcement learning with rewards that
highly agree with human-perspectives. Specifically,
we apply a BERT regressor (Devlin et al., 2019)
on grammaticality, meaning preservation, and sim-
plicity, respectively, as shown in Figure 1. Exper-
iments on the Newsela dataset (Xu et al., 2015)
have shown that reinforcement learning with our
rewards balances meaning preservation and sim-
plicity. Further, manual evaluation has shown that
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our outputs were preferred by humans compared to
previous models.

2 Background: Reinforcement Learning
for Text Simplification

Reinforcement learning in text-to-text generation
tasks is performed as additional training for pre-
trained text-to-text generation models. It is a com-
mon technique to linearly interpolate a reward of
reinforcement learning and the cross-entropy loss
to avoid misleading training because of a large ac-
tion space (Ranzato et al., 2016; Zhang and Lapata,
2017). We first explain an attention based encoder-
decoder model (EncDecA) (Luong et al., 2015) in
Section 2.1 and then reinforcement learning for text
simplification in Section 2.2.

2.1 Encoder-Decoder Model with Attention

Let X = (x1, · · · , x|X|) be a source sentence and
Y = (y1, · · · , y|Y |) be its reference sentence. In
text simplification, the source and reference are
complex and simple sentences, respectively. An
encoder takes a source sentence as input, and out-
puts hidden states. Decoder generates a word dis-
tribution at time step t + 1 from all the encoder
hidden states and the series of decoder hidden state
(h1, · · · , ht). We generate a sentence Ŷ by sam-
pling words from the distribution at each time step.

The objective function for training is averaged
cross entropy loss of sentence pairs:

LC = −
|Y |∑
t=1

logP (yt+1|y1···t, X). (1)

As the Equation (1) suggests, y1···t is given at train-
ing but not at an inference (exposure bias situation).
In addition, cross entropy loss cannot be evaluated
at a sentence-level (loss-evaluation mismatch).

2.2 Reinforcement Learning

Similar to other text-to-text generation tasks (Ran-
zato et al., 2016; Paulus et al., 2018), reinforcement
learning is applied for text simplification (Zhang
and Lapata, 2017; Zhao et al., 2020) to address
the problems of exposure bias and loss-evaluation
mismatch. In the reinforcement learning step, the
pre-trained text-to-text generation model is trained
to increase the reward R(·). By employing a re-
ward function that takes the entire sentence Ŷ into
account, the exposure bias and loss-evaluation mis-
match problems are mitigated.

As automatic evaluation metrics for text simpli-
fication, BLEU, SARI, and FKGL have been used;
however, there has not been a consensus of stan-
dard metrics because of their low correlation with
human perspectives (Xu et al., 2016; Sulem et al.,
2018; Alva-Manchego et al., 2020). Therefore, the
previous studies designed rewards from the follow-
ing three perspectives, based on the standards in
manual evaluation for text simplification.

• Grammaticality: This reward assesses the
grammatical acceptability of the generated
sentence Ŷ . Previous studies used an neu-
ral language model implemented using Long
short-term memory (Mikolov et al., 2010;
Hochreiter and Schmidhuber, 1997).

• Meaning Preservation: This reward assesses
the semantic similarity between the source
sentence X and the generated sentence Ŷ .
Zhang and Lapata (2017) used cosine simi-
larity of the sentence representations from a
sequence auto-encoder (Dai and Le, 2015).
Zhao et al. (2020) used cosine similarity of
sentence representations which consists of
weighted average of word embeddings (Arora
et al., 2017).

• Simplicity: This reward assesses the sim-
plicity of the generated sentence Ŷ . Zhang
and Lapata (2017) used SARI(X,Y, Ŷ ) score,
while Zhao et al. (2020) used FKGL(Ŷ ) score.

Among different ways to conduct reinforcement
learning, one of the standard approaches used in
text simplification is directly maximizing the re-
wards by the REINFORCE algorithm (Williams,
1992; Ranzato et al., 2016). This approach opti-
mizes the log probability weighted by the expected
future reward as the objective function:

LR = −
|Y |∑
t=1

r(ht) logP (yt+1|y1···t, X), (2)

where the expected future reward r(ht) is estimated
using a reward estimator R(·) and a baseline esti-
mator b(ht) calculated from the hidden state at time
step t.

r(ht) = R(·)− b(ht). (3)

Following (Ranzato et al., 2016), the baseline esti-
mator is optimised by minimizing ‖bt −R(·)‖2.

Hashimoto and Tsuruoka (2019) discussed prob-
lems in text-to-text generation by reinforcement
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learning; the expected future reward estimation
is unstable due to the huge action space, which
hinders convergence. This is because the action
space of text-to-text generation corresponds to the
entire target vocabulary, where many words are
rarely used for prediction. Therefore, previous stud-
ies (Wu et al., 2018; Paulus et al., 2018; Hashimoto
and Tsuruoka, 2019) proposed to stabilize the train-
ing in reinforcement learning by first pre-training
a model with cross-entropy loss, and then adding
weighted REINFORCE loss:

L = λLR + (1− λ)LC . (4)

3 BERT-based Supervised Reward

We propose a reward estimatorR(X, Ŷ ) consisting
of sub-rewards for grammaticality RG, meaning
preservation RM, and simplicity RS. These sub-
rewards are combined by weighted sum with hyper
parameters of δ and ε:

(5)R(X, Ŷ ) = δRG(Ŷ ) + εRM(X, Ŷ )

+ (1− δ − ε)RS(Ŷ ).

To achieve a better correlation between each sub-
reward and human perspectives, we employ BERT
regressors and fine-tune them using manually an-
notated datasets.

3.1 Implementation Details

For each sub-reward model, we fine-tuned a pre-
trained bert-base-uncased model1 from Hugging
Face Transformers library (Wolf et al., 2019).
Dropout of 0.2 was applied to all embedding and
hidden layers. All the models were optimized us-
ing the Adam optimizer (Kingma and Ba, 2015).
We linearly decrease learning rate with a warm up
in the first 1, 000 training steps. The batch size
was 32 sentences. We created a checkpoint for the
model at every 100 steps. The training stopped af-
ter 10 epochs without improvement in the Pearson
correlation measured on the validation set.

Each sub-reward estimator was fine-tuned using
the following datasets. Table 1 shows the statistics
for each dataset.

Grammaticality We use the GUG dataset2 (Heil-
man et al., 2014) for estimating the grammaticality

1https://huggingface.co/
bert-base-uncased

2https://github.com/
EducationalTestingService/gug-data

Train Validation Test

GUG 1, 518 747 754
STS-B 5, 749 1, 500 1, 379
Newsela 94, 208 1, 129 1, 077

Table 1: The numbers of sentences in datasets for each
sub-reward estimator

of a sentence. The GUG dataset consists of sen-
tences written by English as the second language
learners. Each sentence has four native English
speakers assessing grammatical acceptability on a
scale of 1 to 4. We estimate the average of these
ratings.

Meaning Preservation We use the STS-B
dataset3 (Cer et al., 2017) for estimating the mean-
ing preservation of sentence pairs. The STS-B
dataset consists of sentence pairs from multiple
sources such as news headlines and image captions.
Each sentence pair is evaluated for semantic sim-
ilarity by five cloud workers on a scale of 0 to 5.
We estimate the average of these ratings.

Simplicity We use the Newsela dataset4 (Xu
et al., 2015) for estimating the simplicity of a sen-
tence. The Newsela dataset is a parallel dataset of
complex and simple sentences. Each sentence is as-
signed a U.S. elementary school reading level on a
scale of 2 to 12. We follow the data split by Zhang
and Lapata (2017). We estimate the grade level of
a single sentence using the BERT regressor.

3.2 Intrinsic Evaluation of Rewards
We evaluated how well our sub-reward estimators
correlate with human perspectives, compared to
previous studies (Zhang and Lapata, 2017; Zhao
et al., 2020).

Compared Models We reimplemented the sub-
reward estimators introduced in Section 2.2. For
RG estimator, we used a 2-layer LSTM language
model of 256 hidden dimensions and word em-
beddings of 300 dimensions. For RM estimator in
Zhang and Lapata (2017), we implemented a se-
quence auto-encoder with bidirectional LSTMs as
an encoder. For RM estimator in Zhao et al. (2020),
we used 300-dimensional word2vec embeddings5

3http://ixa2.si.ehu.es/stswiki/index.
php/STSbenchmark

4https://newsela.com/data/
5https://code.google.com/archive/p/

word2vec/

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/EducationalTestingService/gug-data
https://github.com/EducationalTestingService/gug-data
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
https://newsela.com/data/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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(Mikolov et al., 2013).

Datasets For grammaticality and meaning preser-
vation, we used the test sets of GUG and STS-B
to evaluate the Pearson correlation with human
evaluations. For simplicity, a reward estimator
should be sensitive to grade levels of sentences
with the same meaning, because text simplification
intends to preserve the original meaning of the in-
put sentence. Therefore, we extracted pairs of (Y1,
Y2) of the same source sentence from the Newsela
dataset and evaluated the Pearson correlation be-
tween the difference of estimated simplicity and
the difference of gold-standard grade levels. Note
that RS in Zhang and Lapata (2017), i.e., SARI, re-
quires source and reference sentences. Hence, we
regarded the simplest sentence of the same source
as the reference. We extracted 323 sentence pairs
of simplified versions of the same sentence from
the Newsela test set.

Results Table 2 shows the evaluation results of
each sub-reward estimator. In all perspectives, ex-
isting unsupervised sub-reward estimators have lit-
tle or no correlation with human annotations. As
expected, fine-tuning BERT for each task signifi-
cantly improved the Pearson correlations.

4 End-to-End Evaluation on Text
Simplification

In this section, we evaluate our rewards on an end-
to-end text simplification task using the Newsela
dataset6 shown in Table 1.

4.1 Baseline Encoder-Decoder Model
We implemented and pre-trained the EncDecA
model as a common base to add reinforcement
learning with rewards of ours and previous stud-
ies (Zhang and Lapata, 2017; Zhao et al., 2020).
The EncDecA model has a 2-layer LSTM of 256
hidden dimensions for both the encoder and de-
coder, and attention mechanism by multi-layer per-
ceptron with a layer size of 256. It has word
embedding layers of 300 dimensions tying the
source, target, and the output layer’s weight ma-
trices. Dropout of 0.2 was applied to all embed-
dings and hidden layers. We used byte-pair encod-
ing7 (Sennrich et al., 2016) to limit the vocabulary

6We did not experiment with the Simple English Wikipedia
because it does not have a detailed, difficulty-by-difficulty
rewrite.

7https://github.com/google/
sentencepiece

G M S

Zhang’s sub-rewards −0.135 0.041 0.034
Zhao’s sub-rewards −0.135 0.379 0.175
Our sub-rewards 0.726 0.846 0.473

Table 2: Pearson correlation of each sub-reward esti-
mator. Note that G, M, S correspond to grammaticality,
meaning preservation, and simplicity, respectively.

size to 20, 000 in addition to the pre-processing by
Zhang and Lapata (2017).

The EncDecA model was pre-trained by cross
entropy loss with Adam optimizer ahead of rein-
forcement learning. The batch size was 32 sen-
tences. We created a checkpoint for the model at
every 100 steps. In the pre-training, training was
stopped after 10 epochs without improvement of
SARI score measured on the validation set. How-
ever, as the SARI is not stable at the beginning of
the training, we ignored checkpoints whose BLEU
scores measured on the validation set were less
than 21, as suggested by Vu et al. (2018).

4.2 Hyper-Parameter Settings

In reinforcement learning, the hyperparameter λ
in Equation (4) was initialized to 0.1, and linearly
increased for each iteration until 0.9 during first 10
epochs for stabilizing training process. Following
Zhang and Lapata (2017), we trained reinforcement
learning models with stochastic gradient descent
optimizer with a learning rate of 0.001 and a mo-
mentum term of 0.9. Additionally, we trained the
baseline estimator with Adam optimizer with a
learning rate of 0.001. In the reinforcement learn-
ing, training was stopped after 10 epochs without
improvement on rewards measured on the valida-
tion set.

We set the equal weights to our sub-rewards, i.e.,
assigned 1/3 to δ and ε in Equation (5), respec-
tively. Tuning of these weights is our future work.

4.3 Results of Automatic Evaluation

The performance of each method is automatically
evaluated using the EASSE toolkit6 by BLEU and
SARI. Furthermore, we perform detailed automatic
evaluations of grammaticality, meaning preserva-
tion, simplicity, and overall quality defined in Equa-
tion (5) using our sub-reward estimators.

Table 3 shows the experimental results. In both
our reward and existing rewards, reinforcement
learning has improved the EncDecA baseline in

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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Metrics Rewards Human

BLEU SARI G M S O Avg. Rank

Reference 100.0 100.0 0.909 0.585 0.708 0.734 –

EncDecA 21.57 37.64 0.862 0.681 0.648 0.730 n/a
RL w/ Zhang’s Reward 23.30 39.24 0.878 0.659 0.663 0.734 1.91
RL w/ Zhao’s Reward 23.42 39.20 0.878 0.662 0.662 0.734 1.69
RL w/ Our Reward 23.14 38.70 0.878 0.678 0.653 0.736 1.45**

Table 3: Experimental results of text simplification. Note that G, M, S, and O correspond to grammaticality,
meaning preservation, simplicity, and overall rewards, respectively. ** indicates a statistically significant difference
between the others. (The p-value of the unpaired t-test of our method and both of the other methods were p < 0.01.)

Source They are tired and it shows in their voices , but they ’re still on the
freedom highway .

Reference Their voices sound tired .

EncDecA They are tired and it shows in their voices , but they ’re still on the
freedom .

RL w/ Zhang’s Reward They are tired .
RL w/ Zhao’s Reward They are tired .
RL w/ Our Reward They are tired and it shows in their voices .

Source Historic architecture , crafts and music are being overwhelmed by China
’s growth and its inability to effectively preserve traditions of the past .

Reference Kite making is only part of a bigger story in China .

EncDecA Historic architecture , crafts and music are being overwhelmed by China
’s growth and its inability to effectively preserve traditions of the past .

RL w/ Zhang’s Reward Historic architecture , crafts and music are being overwhelmed by China
’s growth .

RL w/ Zhao’s Reward The music of the city ’s growth and music are being overwhelmed by
China ’s growth .

RL w/ Our Reward Historic architecture , crafts and music are being overwhelmed by China
’s growth and its actions .

Table 4: Examples of generated sentences by each simplification model.

both BLEU and SARI metrics. Reinforcement
learning also improved rewards, but the EncDecA
baseline was the best for meaning preservation. A
trade-off relationship was observed between the re-
wards of meaning preservation and simplicity. This
is expected because the meanings of the input and
generated sentences deviate as the model replaces
and deletes tokens for simplicity. Reinforcement
learning based on our rewards does not improve
simplicity as much as previous methods, but it does
not worsen meaning preservation. This balance has
made our model achieve the highest overall reward.

Table 4 shows generated sentences by each
model. While the previous methods generates ex-
tremely simple sentence at the expense of meaning

preservation, our model generates sentences with
reasonable balances between meaning preservation
and simplicity.

4.4 Results of Human Evaluation

We also conducted human evaluation using Ama-
zon Mechanical Turk.8 Human evaluators rank
three sentences generated by a model based on re-
inforcement learning with different rewards, taking
into account the source sentence. Three sentences
were ranked on the basis of whether they were
rewritten in a simple manner while preserving as
much of the meaning of the source sentence as pos-

8https://www.mturk.com/

https://www.mturk.com/
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sible. We randomly selected 100 sets of generated
sentences, excluding examples that all models gen-
erated the same sentences.9 To ensure the quality
of the human evaluation, we employed five master
workers for each example and used 85 examples
with at least three of them had the same ranking
order.

The average ranking of each model is shown in
the last column of Table 3. Our model was ranked
significantly higher than previous models as con-
firmed by bootstrap testing. These results confirm
that our rewards allow to generate simplified sen-
tences preferred by humans.

5 Conclusion

We trained a text simplification model based on
reinforcement learning with rewards that are highly
correlated with human-perspectives. Experimen-
tal results showed that existing rewards employ-
ing evaluation metrics tend to generate extremely
simple sentence at the expense of meaning preser-
vation. Nevertheless, our BERT-based rewards
succeeded in balancing meaning preservation and
simplicity. In addition, we confirmed that human
evaluators prefer our simplified sentences to those
generated by previous rewards.

In this study, we set the equal weights to our sub-
rewards. We plan to investigate the better weight
balance of sub-rewards in the future.
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