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Abstract

By predicting chemical compound structures
from their names, we can better comprehend
chemical compounds written in text and iden-
tify the same chemical compound given dif-
ferent notations for database creation. Pre-
vious methods have predicted the chemical
compound structures from their names and
represented them by Simplified Molecular In-
put Line Entry System (SMILES) strings.
However, these methods mainly apply hand-
crafted rules, and cannot predict the struc-
tures of chemical compound names not cov-
ered by the rules. Instead of handcrafted
rules, we propose Transformer-based models
that predict SMILES strings from chemical
compound names. We improve the conven-
tional Transformer-based model by introduc-
ing two features: (1) a loss function that con-
strains the number of atoms of each element in
the structure, and (2) a multi-task learning ap-
proach that predicts both SMILES strings and
InChI strings (another string representation of
chemical compound structures). In evaluation
experiments, our methods achieved higher F-
measures than previous rule-based approaches
(Open Parser for Systematic IUPAC Nomen-
clature and two commercially used prod-
ucts), and the conventional Transformer-based
model. We release the dataset used in this pa-
per as a benchmark for the future research1.

1 Introduction

Knowledge of chemical substances is necessary for
developing new materials and drugs, and for synthe-
sizing products from new materials. To utilize such
knowledge, researchers have created databases con-
taining the physical property values of chemical
substances and the interrelationships among chem-
ical substances.

It is thought that several billions of chemical
compounds exist (Lahana, 1999; Hoffmann and

1http://aiweb.cs.ehime-u.ac.jp/
pred-chem-struct

Gastreich, 2019), but only a portion of these are en-
tered into chemical databases. Even PubChem2,
one of the largest databases of chemical com-
pounds, includes the information of only approx-
imately 100 million chemical compounds. More-
over, databases for chemical domains are manually
maintained, which consumes much time and cost.
One of the time consuming processes is the inte-
gration of the same chemical compounds with dif-
ferent notations. For instance, a chemical structure
can be derived from partial structures which are
given notational variants, or the notation can fluc-
tuate for a given chemical compound (Watanabe
et al., 2019). Therefore, a system that automati-
cally predicts a chemical compound structure from
its chemical compound names would improve the
database creation procedure.

Structures are most commonly predicted from
their notations by rule-based conversion meth-
ods (Lowe et al., 2011). Although rule-based con-
version can accurately predict the structures of
chemical compounds based on systematic nomen-
clatures such as the International Union of Pure
and Applied Chemistry (IUPAC) 3 nomenclature,
it often fails the structure prediction of chemical
compound names that violate these nomenclatures
(e.g., Synonyms4).

To improve the low prediction performance
of compounds with non-IUPAC names, we pro-
pose neural network-based models that predict
chemical compound structures represented as
Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988) strings from chemi-
cal compound names categorized as Synonyms5. In
this work, we use the Transformer-based sequence-

2https://pubchem.ncbi.nlm.nih.gov/
3https://iupac.org
4PubChem’s definition of chemical compound names other

than IUPAC names
5Our Synonyms excludes DATABASE IDs from the origi-

nal definition of Synonyms because DATABASE IDs can be
efficiently recognized by rules.

http://aiweb.cs.ehime-u.ac.jp/pred-chem-struct
http://aiweb.cs.ehime-u.ac.jp/pred-chem-struct
https://pubchem.ncbi.nlm.nih.gov/
https://iupac.org
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Name Type Name
IUPAC 2-acetyloxybenzoic acid
DATABASE ID (CAS registry number) 50-78-2
ABBREVIATION ASA
COMMON aspirin

Table 1: Examples of “aspirin” representations. In this table, ABBREVIATION and COMMON are Synonyms.

to-sequence neural network model (Vaswani et al.,
2017) for machine translation, which achieves a
state-of-the-art performance in various tasks among
the sequence-to-sequence neural network models
such as recurrent neural network-based models.
To improve the conventional Transformer-based
model, we introduce the following two chemical-
structure oriented features:

1. A loss function considering the constraints on
the number of atoms of each element in the
chemical structure.

2. A multi-task learning for predicting both
SMILES strings and IUPAC International
Chemical Identifier (InChI) (Heller et al.,
2015) strings, which are representations for
denoting chemical compound structures as
strings.

For our experiments, we created a dataset from
PubChem for predicting chemical compound struc-
tures represented by SMILES strings from Syn-
onyms. The experimental results demonstrate the
Transformer-based conversion methods achieve
higher F-measures than the existing rule-based
methods. In addition, our two proposals (i.e., con-
straining the number of atoms of each element and
multi-task learning of both SMILES strings and
InChI strings) improve the performance of the con-
ventional Transformer-based method.

2 Preliminary

2.1 Chemical Compound Names

In PubChem, the text names of chemical com-
pounds are represented by three main types of no-
tational categories: IUPAC, DATABASE ID, and
Synonyms. IUPAC is a systematic nomenclature
for chemical compound names. DATABASE ID is
the unique identifier of a chemical compound in a
database. An example is the Chemical Abstracts
Service (CAS) 6 registry number. The Synonyms

6https://www.cas.org/
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Figure 1: Chemical structure of L-tyrosine (top), and
its SMILES (middle) and InChI (bottom) representa-
tions

naming category in PubChem includes ABBREVI-
ATION and COMMON. As an example, Table 1
shows various “aspirin” representations.

The IUPAC nomenclature provides a system-
atic naming under standardized rules, which are
easily and accurately converted by rule-based con-
version methods (Lowe et al., 2011); (Heller
et al., 2015). Provided they are registered in the
database, DATABASE IDs are easily converted
to their corresponding chemical compounds using
dictionary-lookup methods. However, neither rule-
based nor dictionary-based approach can convert
chemical compound names that are not covered
by the rules or dictionaries. Unlike IUPAC and
DATABASE ID notations, the naming patterns
of Synonyms are complex and widely variable.
In many cases, the chemical compound names
appearing in documents cannot be converted by
rule-based or dictionary-based approaches. Con-
sequently, the prediction performance of chemical
compound names is worse in Synonyms than in
IUPAC, as shown in section 6.1. In our preliminary
experiments, the highest F-measure obtained with
an existing tool exceeded 0.96 on IUPAC data, but
was reduced to 0.75 on Synonyms data.

https://www.cas.org/
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Figure 2: Overview of Transformer-based prediction of SMILES strings from chemical compound names

2.2 Representation of Chemical Compound
Structures

For multi-task learning, we represented chemical
compound structures as SMILES strings and InChI
strings. These two representations are major no-
tations of chemical compound structures. We use
SMILES strings as the target representation be-
cause they are simpler than InChI strings but were
sufficiently representative for our purpose (i.e., cre-
ating a chemical compound database).

The SMILES (Weininger, 1988) notation sys-
tem was designed for modern chemical information
processing. Based on the principles of molecular
graph theory, SMILES allows rigorous structure
specification using a very small and natural gram-
mar. SMILES strings are composed of atoms and
symbols representing their bonds, branches, rings,
and other structural features, assembled into a lin-
ear expression of the two-dimensional structure of
a molecule. An example of a SMILES string is
shown in Figure 1. In this work, we used Canon-
ical SMILES because it uniquely determines the
correspondence between chemical structures and
SMILES strings.

In the InChI (Heller et al., 2015) representation,
the information of a chemical compound structure
is represented by five layers. In Figure 1, the layers
are separated by “/” symbols. Each layer adds de-
tailed information to the following layer. Because
these layers are interrelated, InChI strings are more
complex than SMILES strings.

3 Proposed Methods

This section presents our proposed methods,
namely, our tokenizer training method and
sequence-to-sequence models. Let X and T be
a set of chemical compound names and a set

of SMILES strings, respectively. We define a
training dataset consisting of n samples as D =
〈(X1, T1), ..., (Xn, Tn)〉, whereXi ∈ X is a chem-
ical compound name and Ti ∈ T is the SMILES
string of Xi for 1 ≤ i ≤ n. Our objective is to
learn a mapping function f that realizes f(Xi) =
Ti from D.

Figure 2 overviews the Transformer-based pre-
diction of SMILES strings from chemical com-
pound names, where <s> is a special symbol de-
noting the start and end of a sequence. Chem-
ical compound names, SMILES, and InChI are
long strings without explicit boundaries (such as
white spaces in English text). Therefore, to con-
vert chemical compound names to SMILES strings,
we propose (a) training of a tokenizer and (b) a
Transformer-based approach.

3.1 Tokenizer

Chemical compound names can be tokenized by the
Open Parser for Systematic IUPAC Nomenclature
(OPSIN) (Lowe et al., 2011) tokenizer, a rule-based
parser that generates SMILES and InChI strings
from chemical compound names (mainly, from IU-
PAC names). However, some chemical compound
names, especially Synonyms, cannot be tokenized
by rule-based tokenizers such as OPSIN. In par-
ticular, the OPSIN tokenizer is limited to chem-
ical compound names covered by its dictionary
and rules; meanwhile (as mentioned above) chemi-
cal compound names lack explicit word-boundary
markers. To overcome these restrictions, we pro-
pose a method that trains tokenizers for Synonyms,
SMILES, and InChI representations. Note that
InChI is used in a multi-task learning.

To eliminate the unknown tokens, our tokenizer
learning method is unsupervised and covers a large
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set of chemical compound names. The tokenization
is performed by byte pair encoding (BPE) (Sen-
nrich et al., 2016)7. The BPE-based tokenizer was
learned by fastBPE8 . First, the chemical compound
names obtained by the OPSIN tokenizer were seg-
mented because fastBPE requires segmented input
text. By virtue of the newly obtained BPE dictio-
nary, the BPE-based tokenizer can tokenize chemi-
cal compound names that cannot be handled by the
OPSIN tokenizer.

When tokenizing the SMILES strings, each el-
ement (e.g., “C”, “O”, “Cl”) identified by regular
expressions was regarded as one token. The remain-
ing symbols not covered by regular expressions
were divided into single characters, each regarded
as one token.

For tokenizing InChI strings, the model was
learned on SentencePiece (Kudo and Richard-
son, 2018), a unigram-based unsupervised training
method for word segmentation. Note that InChI
strings cannot be tokenized by BPE because the
segmentations of InChI strings are not preliminar-
ily given.

3.2 Transformer-based Prediction of
SMILES Strings from Chemical
Compound Names

The Transformer model consists of stacked encoder
and decoder layers. Based on self-attention, it at-
tends to tokens in the same sequence, i.e., a single
input sequence or a single output sequence. The
encoder maps an input sequence to a sequence of
vector representations. From this vector represen-
tations, the decoder generates an output sequence.

The Transformer-based model predicts SMILES
strings from chemical compound names, so its in-
put is a chemical compound name and its output is
a SMILES string. During the learning process, the
following objective function is minimized:

Lsmiles = − logP (T |X;θenc,θsmiles), (1)

where θenc and θsmiles are the parameter sets of
the compound name encoder and SMILES decoder,
respectively, andX = 〈x1, x2, . . . , xn〉 is the word
sequence of a chemical compound name segmented
by the BPE model. T = 〈t1, t2, . . . , tm〉 is the

7In preliminary experiments, BPE achieved a higher F-
measure than SentencePiece (Kudo and Richardson, 2018).
Therefore, it was used for tokenizing the chemical compound
names.

8https://github.com/glample/fastBPE
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Figure 3: Calculating the constraints on the number of
atoms of each element

sequence of elements and symbols in the correct
SMILES string of X .

3.3 Training with a Constraint on the
Number of Atoms

To correctly predict the chemical structure from a
chemical compound name, the number of atoms
of each element included in the chemical struc-
ture must be fixed. In this subsection, we pro-
pose a softmax-based loss function that constrains
the number of atoms of each element, that is, we
minimize the difference between the numbers of
atoms of each element in the predicted and correct
SMILES strings. The differences are measured by
their squared errors.

The squared errors are computed using the Gum-
bel softmax (Jang et al., 2016) function, which
obtains the probability distribution of the num-
ber of atoms of each element in a predicted
SMILES string. Let πi = (πi1, πi2, . . . , πi|V|)
be the probability distribution of the i-th output
token from the Transformer model. Then, yi =
(yi1, yi2, . . . , yi|V|) for the i-th output token with
Gumbel softmax is calculated as follows:

yij =
exp ((log(πij) + gij)/τ)∑|V|
k=1 exp ((log(πik) + gik)/τ)

, (2)

gij = − log(− log(uij)),

uij ∼ Uniform(0, 1),

where V represents the vocabulary set of SMILES,
and τ is a hyperparameter of Gumbel softmax. The
distribution yi approximates an one-hot vector as τ
decreases, and a uniform distribution as τ increases.
In this work, τ was set to 0.1.

Using Equation 2, the loss function under the

https://github.com/glample/fastBPE
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proposed constraints is given by

Latom =
1

|A|
∑
a∈A

(Na(T )− ypredidx(a))
2, (3)

ypred = y1 + y2 + · · ·+ ym
= (ypred1 , ypred2 , . . . , ypred|V| ),

where A is a set of elements, Na(T ) is a function
that returns the number of atoms of element a in
SMILES string T , and idx(a) is a function that
returns the index of element a in V . Note that
A contains only elemental symbols, and the other
features such as symbols representing bonds are
absent. More formally, “C”, “O” ∈ A, “=”, “#”
/∈ A, and V ⊃ A. Each dimension of ypred is an
estimation of the frequency of the corresponding
token of the vocabulary V in the predicted SMILES.
The proposed constraint calculation uses only the
estimation of the elements in V . The frequencies of
elements not included in the correct SMILES are
set to 0.

As an example, Figure 3 shows how the number
of atoms of each element is constrained when the
correct SMILES string is “CC=O”. As “C” and
“O” are elements and “=” is a subsidiary symbol
representing a double bond, the proposed constraint
function treats the number of atoms of each element
(“C” and “O”) as the error to be minimized, and
disregards the “=” symbol.

The objective function under the proposed con-
straints is defined as follows:

Lsmiles + λatomLatom, (4)

where λatom is a hyperparameter that controls the
degree of considering Latom.

3.4 Multi-task Learning for Predicting both
SMILES Strings and InChI Strings

The same chemical structure is differently repre-
sented in a SMILES string and an InChI string. As-
suming that the models for predicting SMILES and
InChI strings compensate each other, we propose a
multi-task learning method that shares the encoder
of the name-to-SMILES and name-to-InChI con-
version models, and trains both models at the same
time.

Let I be the set of InChI strings. We define a
training dataset consisting of n samples as D̃ =
〈(X1, T1, I1), ..., , (Xn, Tn, In)〉, where Xi ∈ X ,
Ti ∈ T , and Ii ∈ I for 1 ≤ i ≤ n. The objective

Compound
Name

Encoder

InChI
Decoder

SMILES
Decoder

C = C O C C O C C Cl <s>
1 S / C 6 H 1 1 Cl O 2/ c 1-2- 8- 5-
6- 9-4- 3-7 / h 2 H ,1 ,3-6 H 2 <s>

2 - ( 2 - C h l o ro eth ox y ) ethyl v inyl ether

<s> C = C O C C O C C Cl<s> 1 S / C 6 H 1 1 Cl O 2/ c 1-2-
8- 5-6- 9-4- 3-7 / h 2 H ,1 ,3-6 H 2

BPE Tokenizer

Element-wise &
Character-wise

Tokenizer

Unigram Model
Tokenizer

2-(2-Chloroethoxy)ethylvinyl ether

C=COCCOCCCl1S/C6H11ClO2/c1-2-8-
5-6-9-4-3-7/h2H,1,3-6H2

Figure 4: Overview of multi-task learning for predict-
ing both SMILES strings and InChI strings

Split Size
Training 5,000,000
Development 1,113
Test 11,194

Table 2: Sizes of the training, development, and test
datasets

is to learn a function f̃ from D̃. f̃(Xi) predicts
both Ti and Ii.

Specifically, the proposed multi-task learning
minimizes the following objective function:

Lsmiles + λinchiLinchi, (5)

Linchi = − logP (I|X;θenc,θinchi),

where θinchi and θenc are parameter sets for the
InChI decoder and shared encoder, respectively,
and λinchi is a hyperparameter that controls the
degree of considering Linchi. Lsmiles is calculated
by Eq. 1. The method is overviewed in Figure 4.

4 Experimental Settings

4.1 Data Set
In all experiments, the data comprised a chemi-
cal compound name and a correct SMILES string.
Using the dump data of PubChem9 (97M com-
pound records), the chemical compound names
were converted to Synonyms associated with each
CID10, and the correct SMILES strings were con-
verted from isomeric SMILES strings11 to canon-

9ftp://ftp.ncbi.nlm.nih.gov/pubchem/
10PubChem’s compound identifier for a unique chemical

structure
11SMILES strings written with isotopic and chiral specifi-

cations

ftp://ftp.ncbi.nlm.nih.gov/pubchem/
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method recall precision F-measure
Rule-based OPSIN 0.693 0.836 0.758

tool A 0.711 0.797 0.752
tool B 0.653 0.800 0.719

Transformer-based transformer 0.793 0.806 0.799
(BPE) atomnum 0.798 0.808 0.803

inchigen 0.810 0.819 0.814
Transformer-based transformer 0.763 0.873 0.814
(OPSIN-TK + BPE) atomnum 0.768 0.876 0.818

inchigen 0.779 0.886 0.829
Transformer-based transformer 0.755 0.868 0.808
(OPSIN-TK) atomnum 0.757 0.867 0.808

inchigen 0.754 0.869 0.807

Table 3: Evaluation results of each converter for Synonyms. Transformer-based ones are our proposed methods.
We evaluated the Transformer-based ones with different three tokenizers, BPE, OPSIN-TK+BPE, and OPSIN-TK.

ical SMILES strings using RDKit12. Note that
in PubChem, the Synonyms includes the IUPAC
names, common names, and IDs of the compounds
in chemical compound databases. Here, we used
the isomeric SMILES strings because they least
overlap with their corresponding CIDs. In the
multi-task learning, the InChI strings are also asso-
ciated with CIDs.

From the dump data, 10,000 CIDs and 100,000
CIDs were randomly selected as the development
and test datasets, respectively, and only the two
chemical compound names with the longest edit
distance were assigned to each CID.

To create Synonyms in the development and test
data, chemical compound names like IDs in the
chemical compound databases were removed using
manually created regular expressions.

In the development and test datasets, duplicate
chemical compound names with different CIDs
were removed13. From the development and test
datasets, we removed 820 and 8,241 duplicates,
respectively.

As the training dataset, we selected chemical
compound names that were categorized as Syn-
onyms that could be tokenized by the OPSIN tok-
enizer. The size of each dataset is listed in Table 2.

4.2 Parameter Settings

The hyperparameters of the Transformer model
were set as follows: number of stacks in the en-
coder and decoder layers = 6, number of heads

12https://github.com/rdkit/rdkit
13The same chemical compound name may have more than

one CID.

= 8, embedding dimension = 512, and dropout
probability = 0.1. The loss functions Lsmiles and
Linchi were computed using a label-smoothing
cross entropy with the smoothing parameter ε set
to 0.1. The learning rate was linearly increased to
0.0005 over the first 4,000 steps. In later steps, it
was decreased proportionally to the inverse square
root of the step number. The optimizer was an
Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9, β2 = 0.98, and ε = 10−8. The model
parameters were updated 300,000 times. The hy-
perparameters λatom and λinchi for controlling the
degree of constraint consideration were set to 0.7
and 0.3, respectively. The number of merge op-
erations for the BPE-based tokenizer of chemical
compound names was set to 500. The vocabulary
size for the tokenizer of InChI strings was set to
1,000. We tuned the hyperparameters for our con-
straints and subword on the development data.

To present the results of our Transformer-based
models, we averaged the last 10 checkpoints (saved
at 1,000-step intervals) of the Transformer models.
We used beam search with a beam size of 4 and
length penalty α = 0.6 (Vaswani et al., 2017). The
maximum output length of an inference was set to
200.

5 Experimental Results

5.1 Prediction Performance

The results are shown in Table 3. Here, tool
A and tool B are two commercially available
tools, atomnum indicates the method based on the
number of atoms described in section 3.3, and
inchigen denotes the multitask learning method

https://github.com/rdkit/rdkit
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Figure 5: Histogram of Jaccard similarities between
incorrect structures generated by inchigen with BPE
and their correct structures

described in section 3.4. The notations BPE and
OPSIN-TK indicate the use of the BPE-based and
OPSIN tokenizers, respectively.

As confirmed in Table 3, the proposed meth-
ods attained higher prediction performance the ex-
isting rule-based methods and the conventional
Transformer-based model. inchigen with BPE
showed 0.056, 0.062, and 0.095 points higher F-
measure than OPSIN, tool A, and tool B, respec-
tively.

The F-measure was further improved by combin-
ing the two tokenizers (see the results of OPSIN-
TK+BPE in Table 3). In the OPSIN-TK+BPE
method, the Transformer-based method with BPE
predicted the structures from chemical compound
names that could be tokenized by the OPSIN to-
kenizer. The highest F-measure and precision
(0.829 and 0.886, respectively) were achieved by
inchigen with OPSIN-TK+BPE.

In the Transformer-based models, the OPSIN
tokenizer obtained higher precision than the BPE-
based tokenizers because approximately 11.5%
(1,293 / 11,194) of the chemical compounds in the
test set could not be tokenized by OPSIN. Conse-
quently, the precision was improved by the reduced
number of outputs. In contrast, the recall was lower
than in the BPE-based tokenizers.

These results clarify the impact of tokenizer out-
puts on the recall, precision, and F-measure scores.

5.2 Error Analysis

Most of the predictions in the Transformer-based
approach were grammatically correct SMILES
strings. In this context, “grammatically correct”

means that the chemical structure can be visu-
alized from the predicted SMILES string using
RDKit, and does not require the correct SMILES
string of a chemical compound name. In particu-
lar, inchigen with BPE achieved grammatically
correct predictions for 99 % of the test data, 10.6–
17.4 % higher than OPSIN, tool A, and tool B. To
evaluate the usefulness of the Transformer-based
approach, we also analyzed the proportion of incor-
rect structure predictions that were grammatically
correct SMILES strings but did not match the cor-
rect SMILES strings.

To this end, we measured the Jaccard similar-
ity (Tanimoto similarity)14 between each structure
that was incorrectly predicted by inchigen with
BPE and the correct structure. The Jaccard similar-
ity, a common technique for measuring chemical
compound similarities, is defined as follows:

J(X,Y ) =
vX · vY

|vX + vY | − vX · vY
,

where the vX and vY are binary chemical finger-
prints of chemical compounds X and Y, respec-
tively, represented by binary vectors. |v| is the L1
norm of v, and vX · vY is the inner product of vX
and vY . Here, a chemical fingerprint expresses a
chemical compound structure as a calculable vector.
A famous type of fingerprint is a series of binary
digits (bits) that represent the presence or absence
of particular partial structures in the chemical com-
pound. For example, the Molecular Access System
key (Durant et al., 2002), which is used as the fin-
gerprints in the present evaluation, comprises 166
partial structures of chemical compounds. Figure
5 is a histogram of the Jaccard similarity scores
obtained in this analysis. We find that most of the
incorrect SMILES strings generated by inchigen
with BPE possessed high Jaccard similarities to
the correct SMILES strings. The average Jaccard
similarity was 0.753.

An incorrect structure generated by inchigen
with BPE is compared with its correct structure
in Figure 6. The two structures differed only by
whether ethylsulfanylbutane or methanethiol was
bonded in the partial structures enclosed by the red
ellipses. In other words, the two structures are very
similar (Jaccard similarity = 0.76).

From this result, we observe that even when the
proposed method generates an incorrect structure,

14Jaccard similarity, also called the Tanimoto similarity,
measures the similarities between pairs of chemical com-
pounds.
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Figure 6: Example of a chemical structure mistakenly for “fmoc-l-buthionine”. The red-edged ellipses enclose
the partial structures that differ between the two chemical structures.

the outcome does not deviate greatly from the cor-
rect structure.

6 Related Work

6.1 Predicting SMILES Strings from
Chemical Compound Names

OPSIN (Lowe et al., 2011) is a rule-based parser
that generates SMILES strings and InChI strings
from chemical compound names (mainly from IU-
PAC names). The OPSIN tokenization approach
is based on regular grammar. From a tokenized
chemical name, an XML parse tree is constructed.
Stepwise operations on this tree are continued until
the structure has been reconstructed from the name.
The construction is performed on substructures as-
sociated with the terms.

As mentioned earlier, many of chemical com-
pound names described in papers and patents do
not comply with IUPAC names or other system-
atic nomenclatures, so are difficult to reconstruct
using rule-based methods. In our preliminary ex-
periments using OPSIN and commercially avail-
able tools, the F-measures of predicting the IUPAC
names in the dataset ranged from 0.878 to 0.960.
However, on the Synonyms dataset, the F-measures
fell to 0.719-0.758.

6.2 Deep Learning methods using SMILES

Recently, SMILES strings have been applied to
chemical reaction prediction (Nam and Kim, 2016;
Schwaller et al., 2019). The method of Nam
and Kim (2016) predicts SMILES strings rep-
resenting products from SMILES strings repre-
senting reactants and reagents. This method em-
ploys a sequence-to-sequence model with an atten-
tion mechanism based on a recurrent neural net-
work (Bahdanau et al., 2015). Schwaller et al.
(2019) achieved higher accuracy than Nam and

Kim (2016)’s model by applying the conventional
Transformer model (Vaswani et al., 2017).

Similarly to our study, their models adapt
SMILES strings to sequence-to-sequence models,
but our target task (predicting chemical structures
from their chemical compound names) differs from
theirs. To improve the accuracy of our target task,
we will improve the update speed and quality of
our chemical compounds databases. We also in-
tend to solve other chemistry problems, including
chemical reactions, by predictive machine learning.

7 Conclusions

This paper introduced our Transformer-based pre-
diction methods, which convert chemical com-
pound names to SMILES strings trained with the
constraint of the number of atoms of each element
in the SMILES string. We also proposed a multi-
task learning approach that simultaneously learns
the conversions to SMILES strings and InChI
strings. In an experimental comparison evaluation,
our proposed method achieved higher F-measures
than the existing methods.

In future work, we intend to explore various
tokenization methods, and further improve the pre-
diction performance. We also hope to apply the
proposed loss function to multi-task learning.
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