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Abstract

In this paper, we describe our team’s ef-
fort on the semantic text question sim-
ilarity task of NSURL 2019. Our top
performing system utilizes several innova-
tive data augmentation techniques to en-
large the training data. Then, it takes
ELMo pre-trained contextual embeddings
of the data and feeds them into an ON-
LSTM network with self-attention. This
results in sequence representation vectors
that are used to predict the relation be-
tween the question pairs. The model is
ranked in the 1st place with 96.499 F1-
score (same as the second place F1-score)
and the 2nd place with 94.848 F1-score
(differs by 1.076 F1-score from the first
place) on the public and private leader-
boards, respectively.

1 Introduction

Semantic Text Similarity (STS) problems are both
real-life and challenging. For example, in the
paraphrase identification task, STS is used to pre-
dict if one sentence is a paraphrase of the other or
not (Madnani et al., 2012; He et al., 2015; AL-
Smadi et al., 2017). Also, in answer sentence
selection task, it is utilized to determine the rel-
evance between question-answer pairs and rank
the answers sentences from the most relevant to
the least. This idea can also be applied to search
engines in order to find documents relevant to a
query (Yang et al., 2015; Tan et al., 2018; Yang
et al., 2019).

A new task has been proposed by Mawdoo31

company with a new dataset provided by their
data annotation team for Semantic Question Sim-
ilarity (SQS) for the Arabic language (Schwab

1https://www.mawdoo3.com

et al., 2017; Mahmoud et al., 2017; Alian and
Awajan, 2018). SQS is a variant of STS, which
aims to compare a pair of questions and determine
whether they have the same meaning or not. The
SQS in Arabic task is one of the shared tasks of the
Workshop on NLP Solutions for Under Resourced
Languages (NSURL 2019) and it consists of 12K
questions pairs (Seelawi et al., 2019).

In this paper, we describe our team’s efforts to
tackle this task. After preprocessing the data, we
use four data augmentation steps to enlarge the
training data to about four times the size of the
original training data. We then build a neural net-
work model with four components. The model
uses ELMo (which stands for Embeddings from
Language Models) (Peters et al., 2018) pre-trained
contextual embeddings as an input and builds se-
quence representation vectors that are used to pre-
dict the relation between the question pairs. The
task is hosted on Kaggle2 platform and our model
is ranked in the first place with 96.499 F1-score
(same as the second place F1-score) and in the sec-
ond place with 94.848 F1-score (differs by 1.076
F1-score from the first place) on the public and
private leaderboards, respectively.

The rest of this paper is organized as follows. In
Section 2, we describe our methodology, including
data preprocessing, data augmentation, and model
structure, while in Section 3, we present our ex-
perimental results and discuss some insights from
our model. Finally, the paper is concluded in Sec-
tion 4.

2 Methodology

In this section, we present a detailed description
of our model. We start by discussing the prepre-
cessing steps we take before going into the details
of the first novel aspect of our work, which is the

2https://www.kaggle.com
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Figure 1: Punctuation marks considered in the prepro-
cessing step

data augmentation techniques. We then discuss
the neural network model starting from the input
all the way to the decision step. The implementa-
tion is available on a public repository.3

2.1 Data Preprocessing
In this work, we only consider one preprocessing
step, which is to separate the punctuation marks
shown in Figure 1 from the letters. For example, if
the question was: “? ÈAmÌ'@

	
J
» , AJ.kQÓ”, then it will

be processed as follows: “? ÈAmÌ'@
	

J
» , AJ.kQÓ”.
This is done to preserve as much information as
possible in the questions while keeping the words
clear of punctuations.

2.2 Data Augmentation
The training data contains 11,997 question pairs:
5,397 labeled as 1 (i.e., similar) and 6,600 labeled
as 0 (i.e., not similar). To obtain a larger dataset,
we augment the data using the following rules.

Suppose we have questions A, B and C

• Positive Transitive:

If A is similar to B, and B is similar to C, then
A is similar to C.

• Negative Transitive:

If A is similar to B, and B is NOT similar to
C, then A is NOT similar to C.

Note: The previous two rules generates
5,490 extra examples (bringing the total up
to 17,487).

• Symmetric:

If A is similar to B then B is similar to A, and
if A is not similar to B then B is not similar
to A.

Note: This rule doubles the number of exam-
ples to 34,974 in total.

3https://github.com/AliOsm/
semantic-question-similarity

Figure 2: Number of examples per data augmentation
step

• Reflexive:

By definition, a question A is similar to itself.

Note: This rule generates 10,540 extra posi-
tive examples (45,514 total) which helps bal-
ancing the number of positive and negative
examples.

After the augmentation process, the training
data contains 45,514 examples (23,082 positive
examples and 22,432 negative ones). Figure 2
shows the growth of the training dataset after each
data augmentation step.

2.3 Model Structure

We now discuss our model structure, which is
shown in Figure 3. As the figure shows, the model
structure can be divided into the following com-
ponents/layers: input layer, sequence representa-
tion extraction layer, merging layer and decision
layer. The following subsections explain each
layer/component in details.

2.3.1 Input
To build meaningful representations for the input
sequences, we use the Arabic ELMo pre-trained
model4 to extract contextual words embeddings
with size 1024 and feed them as input to our
model. The representations extracted from the
ELMo model are the averaged sum of word en-
coder and both first and second Long Short-Term
Memory (LSTM) hidden layers. These represen-
tations are affected by the context in which they
appear (Cheng et al., 2015; Peters et al., 2018;
Smith, 2019). For example, the word “I. ë

	
X”

will have different embedding vectors related to
the following two sentences as they have different

4https://github.com/HIT-SCIR/
ELMoForManyLangs
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Figure 3: Model Structure

meanings (‘gold’ in the first sentence and ‘went’
in the second one):

Q�

�
J» ú



Î« I. ë

	
X

Translation: Ali has a lot of gold.
@YJ
ªK. ú



Î« I. ë

	
X

Translation: Ali went away.

2.3.2 Sequence Representation Extractor
This component takes the ELMo embeddings re-
lated to each word in the question as an input
and feeds them into two a special kind of bidi-
rectional LSTM layers called Ordered Neurons
LSTM (ON-LSTM)5 introduced in (Shen et al.,
2018) with 256 hidden units, 20% dropout rate,
and 8 as the chunk size for each of them. Then, it
applies sequence weighted attention6 proposed by
(Felbo et al., 2017) on the outputs of the second
ON-LSTM layer to get the final question represen-
tation. This component uses the same weights to
compute representations for each question in the
pair. The details of this component are as follows
(Shen et al., 2018).

Since NLP data are structured in a hierarchi-
cal manner, the authors of ON-LSTM (Shen et al.,

5https://github.com/CyberZHG/
keras-ordered-neurons

6https://github.com/CyberZHG/
keras-self-attention

2018) proposed a new form of update and activa-
tion functions (in order to enforce a bias towards
structuring a hierarchy of the data) to the standard
LSTM model reported below:

ft = σg(Wfxt + Ufht−1 + bf ) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

ĉt = tanh(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ tanh(ct) (5)

The newly proposed activation function is
cumax = cumsum(softmax(x)), where
cumsum denotes the cumulative sum function.
Among the desired properties of this function is to
control the updates on the memory cell such that
the higher ranking neurons get updated less fre-
quently (storing long-term and global information)
compared to the lower ranking neurons, which are
updated more frequently (storing short-term and
local information). This makes the neurons up-
dates dependent on each other in contrast to the
updates on the standard LSTM neurons.

The following equations define the new master
input and forget gates and the new memory cell
update function based on the new activation func-

https://github.com/CyberZHG/keras-ordered-neurons
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tion:

f̃t = cumax(Wf̃xt + Uf̃ht−1 + bf̃ ) (6)

ĩt = 1− cumax(Wĩxt + Uĩht−1 + bĩ) (7)

wt = f̃t ◦ ĩt (8)

f̂t = ft ◦ wt + (f̃t − wt) (9)

ît = it ◦ wt + (ĩt − wt) (10)

ct = f̂t ◦ ct−1 + ît ◦ ĉt (11)

The attention mechanism (inspired by (Bah-
danau et al., 2014; Yang et al., 2016)) allows the
model to learn to decide the importance of each
word and build the final question representation
vector based on important words only, while tun-
ing out less important words. With a single param-
eter,wa, the attention mechanism can be described
as follows:

et = htwa (12)

at =
exp(et)∑T
i=1 exp(ei)

(13)

v =
T∑
i=1

aihi (14)

The weight matrix wa is the only new trainable
parameter which learns the attention mechanism
over the outputs of the second ON-LSTM layer.
To calculate the importance scores, at, for each
time step, it first multiplies each time step output,
ht, by the weight matrix, wa, and normalizes the
results using a Softmax function. Finally, the final
sequence representation, v, is the weighted sum
over all ON-LSTM outputs using the importance
scores calculated earlier as weights.

2.3.3 Merging Technique

After extracting the representations related to each
question, we merge them using pairwise squared
distance function applied to the representation
vectors of the two questions in each question pair.
More formally, if V 1 and V 2 are these representa-
tion vectors, then, the merged representation vec-
tor V m can be expressed as follows:

V m =


(V 11 − V 21)

2

(V 12 − V 22)
2

...
(V 1512 − V 2512)

2

 (15)

This component allows for the Symmetric aug-
mentation step (Section 2.2) to enhance the re-
sults, since the (A,B) examples are computation-
ally different (in the back propagation step) from
the (B,A) examples.

2.3.4 Deep Neural Network
The final component is a deep neural network that
consists of four fully-connected layers with 1024,
512, 256, and 128 units using ReLU activation
function and 20% dropout rate applied to each
layer. This network takes the merged representa-
tion vector, V m, as an input and predicts the label
using a Sigmoid function as an output.

3 Experiments and Results

In this section, we start by discussing our exper-
imental setup. We then discuss all experiments
conducted and provide detailed analysis of their
results.

3.1 Experimental Setup

All experiments discussed in this work have been
done on the Google Colab7 (Carneiro et al., 2018)
environment using Tesla T4 GPU accelerator with
the following hyperparameters:

• Optimizer: Adam

• Learning Rate: 0.001

• Loss Function: Binary Cross Entropy

• Batch Size: 256

• Number of Epochs: 100

The experiments are divided into two sets. The
first set aims to explore the effect of the Recurrent
Neural Network (RNN) cell type, while the second
set aims to explore the effect of the data augmen-
tation techniques mentioned in Section 2.2.

For each experiment, five models are trained
and the following results are reported:

• Minimum F1 score gained on the test set.

• Maximum F1 score gained on the test set.

• Average F1 score gained from the five trained
models.

• Majority Voting F1 score gained by ensem-
bling the five trained models.



Table 1: Model size and training time for each RNN cell type

RNN Cell #Params Training Time
GRU 4,363K 55.2s/epoch - 1.53 hours

LSTM 5,413K 58.2s/epoch - 1.61 hours
ON-LSTM (Chunk: 4) 5,938K 74.2s/epoch - 2.06 hours
ON-LSTM (Chunk: 8) 5,675K 74.4s/epoch - 2.06 hours

Table 2: Model F1-score using different RNN cell types

Leaderboard RNN Cell Min Max Avg Vote

Public

GRU 94.075 94.793 94.613 95.242
LSTM 94.614 95.152 94.901 95.062

ON-LSTM (Chunk: 4) 94.524 95.601 95.242 96.140
ON-LSTM (Chunk: 8) 95.601 95.780 95.691 96.499

Private

GRU 93.271 94.194 93.855 94.579
LSTM 93.925 94.271 94.040 94.117

ON-LSTM (Chunk: 4) 93.810 94.425 94.224 94.732
ON-LSTM (Chunk: 8) 94.002 94.463 94.309 94.848

3.2 Effect of RNN Cell Type

In this experiments set, we use the same struc-
ture described in Section 2.3 while changing the
RNN cell type only. We use all 45,514 examples
from the augmented dataset in the training pro-
cess. The tested RNN cells are: Gated Recurrent
Unit (GRU) (Cho et al., 2014), LSTM (Hochreiter
and Schmidhuber, 1997) and ON-LSTM (Shen
et al., 2018). The latter one is tested using two
chunk sizes, 4 and 8, in order to explore the ef-
fect of chunk size on the training process and the
size of the model. Table 1 shows the model size in
terms of trainable parameters and the training time
for each RNN cell type, while Table 2 shows the
F1-scores of the model using different RNN cells.
Best results are shown in bold. The tables show
that while GRU cells are the most efficient, the
ON-LSTM cells (with chunk size 8) are the most
effective (in terms of all considered measures).

3.3 Effect of Data Augmentation

In this experiments set, we use the RNN cell type
that gives the best results in Section 3.2 (ON-
LSTM with chunk size 8) and the same model
structure described in Section 2.3 to explore the ef-
fect of data augmentation steps mentioned in Sec-
tion 2.2.

The data augmentation steps have an effect on
two factors, the training time and the accuracy
measurement (F1-score). Table 3 shows the av-

7https://colab.research.google.com

erage training time over five runs for each data
augmentation step. Moreover, Table 4 shows the
F1-scores of the trained model using different data
augmentation types, best results shown in bold.

The tables show that each augmentation step af-
fects the model’s efficiency negatively. This is ex-
pected since each step incrementally increases the
size of the dataset. On the other hand, not each
increment step has a positive effect on the model’s
effectiveness. Such trends are worth exploring in
a more exhaustive study. Finally, it is worth men-
tioning that the last experiments in both experi-
ment sets are the same. So, they both have the
same results.

3.4 Other Attempts

We test several other techniques to explore how
they might affect our model. For example, using
pre-trained FastText (Bojanowski et al., 2017) em-
beddings as an input to our model yields worse F1-
score on both public and private leaderboards with
94.254 and 93.118, respectively, compared with
the ELMo contextual embeddings model. In an-
other experiment, we use the thought vector out-
putted from the second ON-LSTM layer as in-
put for the decision component. However, the se-
quence weighted attention gives better results by
about 1 point of the F1-score. Moreover, an at-
tempt to overcome the weakness of the Arabic
ELMo model is done by translating the data to

https://colab.research.google.com


Table 3: Model training time for each data augmentation step: O, T, S, and R, which stand for Original, Transitive,
Symmetric, and Reflexive, respectively

Data Augmentation Examples Number Training Time
O 11,997 20.0s/epoch - 0.55 hours

O+T 17,487 29.4s/epoch - 0.81 hours
O+T+S 34,974 57.0s/epoch - 1.58 hours

O+T+S+R 45,514 74.4s/epoch - 2.06 hours

Table 4: Model F1-score using different data augmentation types: O, T, S, and R, which stand for Original,
Transitive, Symmetric, and Reflexive respectively

Leaderboard Data Aug. Min Max Avg Vote

Public

O 93.626 94.703 94.200 94.973
O+T 93.177 94.434 93.877 94.793

O+T+S 94.344 94.793 94.631 95.421
O+T+S+R 95.601 95.780 95.691 96.499

Private

O 93.425 93.810 93.632 94.655
O+T 92.464 93.771 93.232 94.156

O+T+S 93.579 94.002 93.763 94.655
O+T+S+R 94.002 94.463 94.309 94.848

English using Google Translate8 and treating the
problem as an English SQS problem instead, but
the results are much worse with 88.868 and 87.504
F1-scores on public and private leaderboards, re-
spectively. This is probably because a lot of infor-
mation is lost during the translation process.

3.5 Discussion

This section briefly analyzes the questions repre-
sentations learnt by our model. With the sequence
weighted attention layer, the model reduces all
the information about the sequence extracted us-
ing the ON-LSTMs down to a 512 fixed-size vec-
tor. By extracting these vectors from our best
model and plotting them on a 2D plane using t-
SNE (Maaten and Hinton, 2008) dimensionality
reduction algorithm, we notice some very useful
observations. For example, the model learns to
map questions that ask about the same thing to
have nearby representations in the vector space
such as the questions in Figure 4 with the form:
“How to prepare ‘something’?”. The same thing
goes for the questions in Figure 5 with the form:
“What is the definition of ‘something’?”. In a sim-
ilar manner, in Figure 7, the questions ask about
different types of languages like “What is the for-
mal language in Portugal?” and “What is PHP
language?” are close, as well as, the questions in

8https://translate.google.com

Figure 8 that ask about places like “Where is Swe-
den?”, “Where is the Karak area in Jordan?”, and
“Where is the Kremlin Castle?”.

To further illustrate the usefulness of the se-
quence weighted attention layer, Figure 6 shows
that the attention layer learns to focus more on
the key words in the questions that would deter-
mine what the question is actually asking about.
This allows the model to make better decisions for
whether the the questions are similar or not, even
if the questions have similar words but ask about
different things. The first and second questions
in Figure 6 ask about “What is the general man-
ager?”. So, the attention layer focuses on “the gen-
eral manager” which is “ÐAªË@ QK
YÖÏ @”. However, in
the third and fourth questions, one asks “What is
the most beautiful thing that is said about death?”
and the other ones asks “What is death?”, although
both questions are related to “death” which is
“ �

HñÖÏ @” but the attention layer distinguishes them
as not similar, where in the former one, the fo-
cus is concentrated by order on the words “ÉJ


�
¯”,

“ÉÔg
.


@” and “ �

HñÖÏAK.” (“said”, “most beautiful” and
“death”), while the latter one focuses mostly on
“ �

HñÖÏ @” (“death”).

https://translate.google.com


Figure 4: Representations extracted from sequence weighted attention layer for questions of the form: How to
prepare ‘something’?

Figure 5: Representations extracted from sequence weighted attention layer for questions of the form: What is the
definition of ‘something’?

Figure 6: Weights per word from sequence weighted
attention layer on four different examples

4 Conclusion

In this paper, we described our team’s effort on the
semantic text question similarity task of NSURL
2019. Our top performing system utilizes sev-
eral innovative data augmentation techniques to
enlarge the training data. Then, it takes ELMo
pre-trained contextual embeddings as an input and
builds sequence representation vectors that are
used to predict the relation between the question
pairs. The model was ranked in the 1st place
with 96.499 F1-score (same as the second place
F1-score) and the 2nd place with 94.848 F1-score
(differs by 1.076 F1-score from the first place) on
the public and private leaderboards, respectively.
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Figure 7: Representations extracted from sequence weighted attention layer for questions that ask about different
language types

Figure 8: Representations extracted from sequence weighted attention layer for questions that ask about different
places
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