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Abstract

In this work we analyze and compare the behavior of the
Transformer architecture when using different positional en-
coding methods. While absolute and relative positional en-
coding perform equally strong overall, we show that rela-
tive positional encoding is vastly superior (4.4% to 11.9%
BLEU) when translating a sentence that is longer than any
observed training sentence. We further propose and analyze
variations of relative positional encoding and observe that
the number of trainable parameters can be reduced without
a performance loss, by using fixed encoding vectors or by
removing some of the positional encoding vectors.

1. Introduction

In this work we analyze the performances of different meth-
ods to encode positional information in the Transformer ar-
chitecture [1]. The Transformer architecture relies on self-
attention layers to handle sequences of varying length. How-
ever, self-attention layers themselves provide little positional
information. Keys and values in self-attention are treated as
sets without an ordering and reordering the queries simply
results in a reordered output. While the decoder may get
some positional information from the left-to-right masking
scheme, the encoder does not have access to any positional
information. To solve this problem, Transformer models rely
on explicit positional information, typically in form of a (ab-
solute) positional encoding vector that is added to each em-
bedded word.

Recent works suggest to use relative positional encodings
instead. This can be done by modifying the self-attention
layer, which considers each pair of tokens from the input sen-
tence, to include a new vector that encodes the distances of
the tokens [2, 3].

In this work we empirically analyze different positional
encoding schemes for the use of machine translation. We
compare absolute and relative positional encodings with a
strong focus on their behaviour for different sentence lengths.
Furthermore we propose and analyze different variations and
combinations of absolute and relative positional encoding.

2. Related Work
The Transformer [1] model consists of stacked encoder and
decoder layers. Since the model uses self-attention layers to
handle sequences, information about the sequence order has
to be included explicitly into the model. Vaswani et al. [1]
introduced the Transformer using absolute positional encod-
ings based on sinusoid functions. Absolute positional encod-
ings are also used in convolutional systems [4]. The posi-
tional encodings are added to the input embeddings at the
bottom of the encoder and decoder stacks.

Shaw et al. [2] propose an alternative approach, in which
the self-attention mechanism is extended to efficiently ac-
count for representations of relative positions or distances be-
tween tokens. The relative positional information is included
by adding vectors, which represent the pairwise relationship
between the current position and other positions, to the pro-
jected keys and values. Our experiments are mainly based on
this technique.

Chen et al. [5] use bidirectional long short-term mem-
ory (LSTM) [6] cells in a recurrent neural networks (RNN)
and combine it with a self-attentive architecture, showing
that recurrence can contribute to their strongest model. The
proposed cascaded model involves the fine-tuning of self-
attention layers stacked on pre-trained frozen LSTM lay-
ers. With this structure, the positional encoding technique
in the standard Transformer model is no longer required, as
the LSTM-RNN layers can embed contextual information of
unlimited length. Inspired by this idea, we also try to ap-
ply LSTM layers for the purpose of positional encoding (for
both encoders and decoders) and compare them with other
positional encoding techniques.

Dai et al. [3] also claim that absolute positional encoding
does not contain information to distinguish positional differ-
ences, which can lead to a performance loss. To avoid this
the authors offer a different derivation than [2] and test their
method on the task of language modeling.

3. Positional Encoding
The Transformer architecture is a sequence-to-sequence ar-
chitecture, consisting of stacked encoder and decoder layers.
To generate sequence representations the Transformer em-



ploys self-attention.
An encoder layer consists of a self-attention sub-layer

followed by a feedforward sub-layer. Similarly, a decoder
layer consists of a self-attention sub-layer, followed by an
encoder-decoder attention sub-layer, which is followed by a
feedforward sub-layer. The output of each sub-layer for a
given time step is of dimension dmodel. However, the self-
attention mechanism ignores the sequence order, which is
why positional encodings are used in the Transformer archi-
tecture.

3.1. Absolute Positional Encoding

In the original Transformer architecture, an absolute po-
sitional encoding vector PEj is added to each embedded
source and target word to denote its position j. The idea
is to use sinusoids of different wavelengths to encode dif-
ferent positions. For the position j ∈ {1, . . . , J} in a se-
quence of length J , the absolute positional encoding vector
PEj ∈ Rdmodel is defined by

PEj,2β = sin(j/100002β/dmodel), (1)

PEj,2β+1 = cos(j/100002β/dmodel) (2)

where β = 1, . . . , bdmodel

2 c. Vaswani et al. [1] propose that
sinusoidal positional embeddings perform equally well as
learned positional encodings and hypothesize that the former
are capable of generalizing to longer sequences.

3.2. Relative Positional Encoding

Absolute positional encoding does not explicitly consider
distance relationships. In the framework of relative posi-
tional encoding [2] a trainable distance encoding is added
to every self-attention layer.

Consider the n-th head of a self-attention layer. First,
a vector γKj′−j ∈ Rdk is added to the projected keys when
computing the energy:

ej,j′ =
(hj′W

Q
n )(hjW

K
n + γK

j′−j
)T

√
dk

, (3)

where WK
n , W

Q
n ∈ Rdmodel×dk are the projection matrices of

the n-th attention head, {hj | j = 1, . . . , J} is the set of keys
and hj′ is the j′-th query of the self-attention mechanism.
Second, the projected values are shifted by γVj′−j ∈ Rdv
when computing the weighted sum:

cj =

J∑
j′=1

αj,j′(hjW
V
n + γV

j′−j), (4)

where αj,j′ =
exp ej,j′∑J
j̃=1

exp ej,j̃
and WV

n ∈ Rdmodel×dv is a pro-

jection matrix. Using the two different distance terms γKj′−j
and γVj′−j for the projected keys and the projected values al-
lows to project these keys and queries onto different dimen-
sions, i.e. dk 6= dv .

The distance terms are based on trainable parameters
rK−τ , . . . r

K
τ ∈ Rdk and rV−τ , . . . r

V
τ ∈ Rdv respectively,

where the hyperparameter τ describes the clipping distance.
A distance term γj′−j , which encodes a distance that exceeds
τ , will fall back to the value of γτ (or γ−τ , if j′ < j):

γKj′−j = rKclipτ (j′−j) (5)

γVj′−j = rVclipτ (j′−j) (6)

clipτ (x) = max(−τ,min(τ, x)). (7)

In order to facilitate computation, the distance terms are
shared across attention heads of a multi-head attention layer,
but not across self-attention sub-layers or Transformer lay-
ers.

A variation of relative positional encoding is to use the
sinusoids from the absolute positional encoding approach in-
stead of trained parameters (relative sinusoidal positional en-
coding):

γKj′−j = [PEclipτ (j
′−j),1, . . . ,PEclipτ (j

′−j),dk ] (8)

γVj′−j = [PEclipτ (j
′−j),1, . . . ,PEclipτ (j

′−j),dv ]. (9)

We also investigate a variation of relative positional encoding
where the distance terms γV are omitted.

3.3. LSTM-based Positional Encoding

Since the Transformer employs self-attention layers for se-
quence handling it needs explicit positional information to
avoid bag-of-word modeling. Bahdanau et al. [7] handle this
problem by using LSTM layers that incorporate the posi-
tional information implicitly. This LSTM-based positional
encoding can be used for the Transformer architecture. In
the encoder, the embeddings are passed into a BiLSTM layer
before being passed into the first encoder layer. Similarly, we
introduce a single LSTM layer between the embedding layer
and the first decoder layer. Note that this approach signif-
icantly increases the number of parameters (by 20% in our
case), increases the model depth and removes parts of the
parallelism for the Transformer architecture.

This addition of two LSTM layers is similar to the idea
of a LSTM-Transformer Cascaded Encoder [5], i.e. to pass
the source sequence first through an LSTM-based encoder
before feeding the output representations to a regular Trans-
former encoder. Differently than Chen et al. [5] we only in-
tend to retain the positional information, hence we use a sin-
gle BiLSTM layer in the encoder. Furthermore Chen et al.
do not consider the LSTM layers in the decoder.

4. Experimental Results
4.1. Experimental Setup

We use a 6 layer Transformer model that closely matches
the ‘base’ configuration that was introduced together with
the Transformer architecture [1]. In particular we use 8 at-
tention heads and layer sizes of dmodel = 512 and dff = 2048



Positional
Encoding

De→En Zh→En
newstest2018 newstest2019
BLEU TER BLEU TER

Absolute 40.4 46.7 24.0 64.0
Relative 40.4 46.9 25.0 62.9

Table 1: Comparison of absolute and relative positional en-
coding on the WMT De→En and Zh→En news translation
task.

for the feed-forward layer. For all experiments with relative
positional encoding we use a clipping distance of τ = 16 as
suggested by Shaw et al. [2]. Source embeddings, target em-
beddings and target projection matrices are not shared and
a warm-up period with constant or increasing learning rate
was not used. All models are trained using the Adam op-
timizer [8] with a learning rate of 0.0003. We use a batch
size of 4700 tokens and save a model checkpoint 8 times
per epoch. The learning rate is scaled by a factor of 0.9 if
no improvement in perplexity on the development set has
been observed for 6 consecutive evaluation checkpoints. All
BLEU scores reported are calculated on case-sensitive and
tokenized data. TER scores are calclated using TERCom.

We train our models on the data from the De→En and
the Zh→En news translation task of WMT 2019. For the
De→En task we train on CommonCrawl, Europarl, News-
Commentary and Rapid summing up to a total of 6M lines
with newstest2015 as development set. During pre-
processing we apply byte pair encoding [9] with 50k joint
merge operations. Our Zh→En systems are trained on all
WMT2019 parallel data, namely NewsCommentary, the UN
and CWMT corpus totaling 13.7M lines. As development set
the concatenation of newsdev2017 and newstest2017
is used. All Zh→En data is preprocessed using the unigram
language model segmentation algorithm [10] with separate
vocabularies of size 32k. If not stated otherwise, all se-
quences longer than 100 tokens are ignored during training
which make about 0.4% (De→En) and 0.2% (Zh→En) of the
training data. Note that throughout the paper we determine
the length of a sentence by counting the tokens on tokenized,
subworded text.

Our results on Zh→En and De→En are given in Table 1.
While both positional encoding schemes perform equally on
the De→En task , we see a clear improvement of 1.0% BLEU
for the case of Zh→En. Note that during training we discard
sentence pairs if source or target exceeds 100 tokens. This is
not a problem for newstest2018 of the De→En task since
no such sentence pair occurs, however for Zh→En out of
the 2000 sentence pairs from newstest2019 about 1.4%
of the source sentences and 4.2% of the target sentences are
longer than 100 tokens. In the following we take a closer look
at the performance of different positional encoding schemes
for sequences of various length.

4.2. Sequence Length Analysis

In order to get a bigger test set that provides a higher variety
of sequence lengths we consider the long-standing De→En
task and concatenate all old test sets newtest2008-2018
with the exception of newstest2015 which is used as the
development set. This results in the test set newstest all
consisting of 28k sentence pairs. We partition this test set
in 5 groups based on their source sequence length, such that
each group gathers sentence pairs of similar length. Formally
we define:

Gα:β :=
{
(fJ1 , e

I
1) ∈ newstest all | α ≤ J ≤ β

}
where fJ1 is the source sentence of length J and eI1 the corre-
sponding target sentence of length I . In the rest of this work
we group all sentence pairs with a source length difference
of 25, e.g. all source sentences between 0 and 25 in G0:25.

In Table 2 Lines 1-3 we report the performance of the
three positional encoding schemes presented in Section 3 on
G0:25, . . . , G101:∞ as well as the size of the resulting groups.
Note that in this section the only relative positional encod-
ing considered is the one proposed by [2] with trainable γK

and γV . See Line 1 for a baseline using absolute positional
encoding which is the default setting of many Transformer
implementations. Note that the performance is very similar
for different length source sentences up to 75 tokens (G0:25

to G51:75) and drops about 2% BLEU when source sentences
of length 76-100 are considered. The translation of source
sentences of length higher than 100 tokens however results
in a BLEU score of 21.5% i.e. a drop of 7.8% BLEU and
an increase of 7.0% TER. Compared to this the model with
relative positional encoding (Line 2) performs equally in the
cases G0:25, . . . , G76:100 but does not drop in performance
when the source sequences extend beyond length 100.

If we use an LSTM-based positional encoding the per-
formance for sequences up to length 100 is equal to both
absolute and relative positional encoding but in-between the
two approaches for sequence longer than that. Since LSTM-
based positional encodings are weaker than pure relative po-
sitional encoding we ignore them for our further investiga-
tion.

We observe that absolute and relative positional encod-
ing perform extremely similar in most cases, however for se-
quences longer than 100 tokens relative positional encoding
establishes a very strong lead of around 8% BLEU. We would
like to point out that in our setup the maximum source length
observed in training is also 100 tokens (see Section 4.1).
This raises the question whether absolute positional suffers
a) when generalizing to unseen sequence lengths or b) on
long sequences in general.

To answer the above question we train two models us-
ing absolute respectively relative positional encoding with
the same setups as before but restricting the sequence length
to 75 tokens in training. This removes 71k sentence pairs,
i.e. 1.2% of the training data. Comparing the two versions
of the absolute positional encoding model (Table 2 Line 1



Source Length J
max

seq.len.
in train

J ∈ [0,25] J ∈ [26,50] J ∈ [51,75] J ∈ [76,100] J > 100

Encoding |G0:25| = 14641 |G26:50| = 11024 |G51:75| = 2109 |G76:100| = 261 |G101:∞| = 40

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

1 Absolute
100

31.7 57.9 32.0 57.3 31.4 58.5 29.3 62.3 21.5 69.3
2 Relative 31.8 58.1 32.2 57.1 31.8 58.1 29.3 62.7 29.3 62.7
3 LSTM 31.4 58.6 31.9 57.5 31.4 58.4 28.7 63.9 25.5 66.6
4 Absolute 75 31.7 58.1 32.0 57.3 31.2 58.6 25.9 65.0 15.3 74.5
5 Relative 31.7 58.0 31.9 57.4 31.5 58.5 29.6 62.2 27.2 66.3

Table 2: Comparison of different positional encoding schemes by sequence length on the De→En task. Results are reported on
the concatenation of newstest2008-2018 without the development set newstest2015. Sentences are grouped by their
source length J before translation and the number of available sentences per group is given by |G|.

vs 4) we notice that they have equal performance for for all
sequence lengths up to 75. For sequences with length be-
tween 76 and 100 the absolute positional encoding model
loses 3.4% BLEU if it does not see these lengths in train-
ing. For sequences longer than 100 tokens this difference
grows to 6.2% BLEU. Note that this drop in BLEU can not
be explained by a loss of training data since relative posi-
tional encoding systems on the same training data do not suf-
fer from the same performance loss (Table 2 Line 5). These
systems perform equally good as the absolute positional en-
coding baseline (Line 1) up to source lengths of 100 even
though it is not trained to deal with them. For sequences
longer than 100 tokens the relative positional encoding sys-
tem with reduced training data outperforms the baseline by
5.8% BLEU but stays 2.1% BLEU behind its counterpart on
the full data (Line 2).

In total we conclude that absolute and relative positional
encoding are equally strong for sequence lengths observed
in training. Since these make up the majority of the test
data that all five systems in Table 2 have a very similar ab-
solute performance with BLEU scores ranging from 39.9%
to 40.4% on the newstest2018. However relative po-
sitional encoding is vastly superior if applied to unseen se-
quence lengths.

A problem of this kind of analysis is the lack of long sen-
tences available. While G0:25, G26:50 and G51:75 all contain
more than 2k sentence pairs note that we just end up with
40 sequences longer than 100 tokens even when combining
9 test sets. This is obviously a very thin basis to draw con-
clusions from. While we could extract long sentence pairs
from the training data it is quite possible that this results in
a very biased selection, e.g. by selecting sentences with very
uncommon words which are split heavily by a subword seg-
mentation.

In order to increase the amount of good-quality
long sentences we take consecutive sentence pairs from
newstest all and concatenate their source respectively
target sides. This yields a new test set concat seq
with 14k sentence pairs which we group again into
G̃0:25, . . . , G̃101:∞ which are translated with the above mod-

els. The smallest group contains |G̃101:∞| = 731 sentence
pairs which allows for more reliable observations. This cre-
ates a small asymmetry between training (where the mod-
els learns to translate one source to one target sentence) and
translation (where the models now translate two source to
two target sentences). Since all models are equally exposed
to this we do not believe that this changes the relative perfor-
mance difference between the systems.

Table 3 shows that all four models drop quite a bit in
performance, however their relative behaviour remains the
same: Up to sequences of length 75, all 4 models are equally
strong, but for sequence lengths between 75 and 100 only
the model using absolute positional encoding with maximum
sequence length 75 in training drops in performance. Similar
to Table 2 this is a very significant drop by about 4% BLEU.
For sequences longer than 100 tokens both relative positional
encoding models perform equally well beating the absolute
positional encoding baseline by 4% BLEU.

This confirms our observation that relative positional en-
coding is superior to absolute positional encoding in terms of
generalization to unseen sequence lengths.

4.3. Further analysis of relative positional encoding

Since relative positional encoding has proven to be benefi-
cial for sequences of unseen lengths, we further analyze three
variations of this method:

• Relative sinusoidal positional encoding does not use
trainable parameters for γ vectors but instead uses
the sinusoids from absolute positional encoding as de-
scribed in Section 3.2.

• Relative γK-only positional encoding by using the
relative positional information γKj′−j for the self-
attention key but omitting γVj′−j for the value.

• Relative and absolute positional encoding by apply-
ing both encoding approaches in the same model.

We report the results for all 3 systems trained with max-
imum sequence length of 100 tokens on G̃0:25, . . . , G̃101:∞



Source Length J
max

seq.len.
in train

J ∈ [0,25] J ∈ [26,50] J ∈ [51,75] J ∈ [76,100] J > 100

Encoding |G̃0:25| = 940 |G̃26:50| = 5903 |G̃51:75| = 4709 |G̃76:100| = 1755 |G̃101:∞| = 731

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

1 Absolute 100 26.9 63.8 27.1 62.3 27.2 62.4 27.4 62.5 20.1 71.0
2 Relative 100 27.0 63.5 26.9 62.7 27.2 62.9 27.3 63.2 24.5 67.0
3 Absolute 75 26.7 63.0 26.9 62.4 26.9 62.5 22.7 66.3 14.9 74.6
4 Relative 75 26.8 63.0 27.1 62.3 27.3 62.3 27.0 62.8 24.2 66.2

Table 3: Comparison of different positional encoding schemes on the De→En task when translating two consecutive sentences.
Results are reported on concat seq. Sentences are grouped by their source length before translation and the number of
available sentences per group is given by |G̃i|.

Source Length J
J ∈ [0,25] J ∈ [26,50] J ∈ [51,75] J ∈ [76,100] J > 100

Encoding |G̃0:25| = 940 |G̃26:50| = 5903 |G̃51:75| = 4709 |G̃76:100| = 1755 |G̃101:∞| = 731

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Relative 27.0 63.5 26.9 62.7 27.2 62.9 27.3 63.2 24.5 67.0
Relative sinusoidal 26.4 63.9 26.9 62.8 27.1 63.2 27.0 63.3 24.5 66.5
Relative γK-only 27.1 63.0 27.1 62.1 27.1 62.5 27.1 62.9 24.4 66.8
Relative and absolute 26.2 63.9 26.7 62.7 27.0 62.5 26.7 63.5 22.5 67.3

Table 4: Comparison of modifications of absolution positional encoding on the De→En task when translating two consecutive
sentences. Results are reported on concat seq. Sentences are grouped by their source length J before translation and the
number of available sentences per group is given by |G̃i|.

of concat seq in Table 4. Surprisingly all variations show
a performance very similar to the pure relative positional
baseline. Relative sinusoidal positional encodings and the
combination of relative and absolute positional encoding are
slightly weaker for short sentences. However in further ex-
periments on newstest all we do not observe the same
pattern and conclude that it is most likely noise. More mean-
ingful is that the combination of relative and absolute posi-
tional encoding lacks behind 2.0% BLEU on G̃101:∞. We
observe similar behaviour on G101:∞ of newstest all
where the combination is 4.5% BLEU weaker than pure rela-
tive positional encoding.

This indicates that half the parameter added by relative
positional encoding can be omitted since the addition of
γKj′−j alone yields equal performance and length generaliza-
tion.

5. Conclusion
We analyze the behaviour of the Transformer architecture
with absolute and relative positional encoding and show that
relative positional encoding is strongly superior when trans-
lating a source sequence that is longer than any observed
training sequence. By excluding long sequences from the
training we verify that this gap of 4.4% to 11.9% BLEU is
an effect of generalization not of absolute sentence length.
We further analyze variations of relative positional encoding
and observe that the number of trainable parameters can be
reduced by using fixed positional encodings or by removing
the weight vectors γK without a performance loss.

Because long sequences are rare in test sets, the described
effects are often not visible when total BLEU or TER perfor-
mance is considered. For a strong and stable general purpose
system however, these differences are crucial.

We restrict our analysis to the relative positional encod-
ing presented by Shaw et al. [2] and further research should
include alternatives such as the one presented by Dai et
al. [3]. It remains open for investigation whether the results
carry over to other task such as language modeling or auto-
matic speech recognition.
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