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Abstract

This paper describes FBK’s submission to the end-to-end
speech translation (ST) task at IWSLT 2019. The task con-
sists in the “direct” translation (i.e. without intermediate
discrete representation) of English speech data derived from
TED Talks or lectures into German texts. Our participation
had a twofold goal: i) testing our latest models, and ii) eval-
uating the contribution to model training of different data
augmentation techniques. On the model side, we deployed
our recently proposed S-Transformer with logarithmic dis-
tance penalty, an ST-oriented adaptation of the Transformer
architecture widely used in machine translation (MT). On the
training side, we focused on data augmentation techniques
recently proposed for ST and automatic speech recognition
(ASR). In particular, we exploited augmented data in dif-
ferent ways and at different stages of the process. We first
trained an end-to-end ASR system and used the weights of
its encoder to initialize the decoder of our ST model (trans-
fer learning). Then, we used an English-German MT sys-
tem trained on large data to translate the English side of
the English-French training set into German, and used this
newly-created data as additional training material. Finally,
we trained our models using SpecAugment, an augmentation
technique that randomly masks portions of the spectrograms
in order to make them different at every training epoch. Our
synthetic corpus and SpecAugment resulted in an improve-
ment of 5 BLEU points over our baseline model on the test
set of MuST-C En-De, reaching the score of 22.3 with a sin-
gle end-to-end system.

1. Introduction
End-to-end speech-to-text translation [1, 2] is the task of di-
rectly translating a speech presented as an audio signal in
a source language into a text in a different target language.
The main goals of translating from the audio without inter-
mediate discrete representations are to reduce translation la-
tency and to avoid the cumulative effect of error propaga-
tion. Cumulative errors typically affect the so-called cascade
approaches to ST, which rely on a two-step processing in-
volving separate speech recognition and translation compo-
nents. Another advantage of the direct approach is the pos-
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sibility to translate languages without a formal script [3, 4],
in particular for emergency situations. However, the high
expectations so far have not been matched by the empirical
results, which are generally much worse with an end-to-end
system than with a cascade approach [5]. First, the main dif-
ficulty of this approach comes from the scarce availability
of annotated corpora for the end-to-end task. These corpora
should come in the form of large collections of (src audio,
tgt text) pairs, which are costly to acquire and still available
only in small amount compared to the wealth of data exist-
ing for the two related tasks of automatic speech recognition
(ASR) and machine translation (MT) [6, 7, 8, 9]. Second,
the transfer learning methods proposed so far to re-use mod-
els from the two related tasks of ASR and MT resulted to be
ineffective [10]. In particular, while pre-training the encoder
with an ASR model helps to gain some BLEU points, pre-
training the decoder with an MT system gives marginal or
no improvement at all [2, 11]. Nonetheless, the end-to-end
approach still has potential as it provides a natural way to
directly train ST models with parallel audio-translation data.
While the availability of this type of resource is still limited,
it is expected to grow in future as this task attracts more re-
search. In the meanwhile, data augmentation can represent a
viable workaround that has already been used in some works
claiming to have bridged the gap with the cascade approach
[12, 13].

This is the second time that we participate in this task.
Last year, our submissions exploited the ST data released
for that edition [14] to train an LSTM-based model similar
to the one introduced in [2]. As we found some noise in
the training corpus, we performed a data filtering process,
which yielded some gain in performance [15]. This year, our
submission is improved under several aspects: i) we trained
our models on larger data with a better segmentation, ii) we
used our recently-proposed deep learning architecture [16]
based on Transformer [17] and leveraging more parameters,
and iii) we experimented with different techniques for data
augmentation. In particular, we still used transfer learning
of the encoder weights from an ASR system [2, 3]. Addi-
tionally, we generated synthetic data by forward-translating
transcripts from English into German [12, 5], and we used
SpecAugment[18], a technique for online data augmentation
that achieved state-of-the-art results on ASR with end-to-end
models. Compared to our baseline system, which uses only



transfer learning, our best single system obtained a perfor-
mance improvement of about 5 BLEU points.

2. Data and augmentation
We trained our model using a combination of clean and syn-
thetic data, which are all derived from TED talks. In partic-
ular, we only exploited the MuST-C [6] corpus because it is
the most recent and the largest one among the usable corpora.
Indeed, the talks included in the other resources available to
participants (i.e. WIT3 – [19] and the Speech-Translation
TED corpus downloadable from the task web page1) are ei-
ther contained in MuST-C or they were filtered out of it be-
cause too noisy.

2.1. Clean Data

To train our end-to-end ST model, we used only the English-
German portion of MuST-C [6], which consists of 408 hours
of speech in English and 234K sentence pairs. The MT sys-
tem used to generate the synthetic data was trained on all
the allowed En-De MT data from WMT 2019 [20], which
amount to 42M sentence pairs and over 900M words for both
languages. The ASR model used to initialize the encoder
weights of our ST model has been trained on the speech-
transcript data from the En-De portion of MuST-C.

2.2. Synthetic Data

Forward-translating the transcripts of parallel data for ASR is
a technique that showed important improvements [12]. Last
year’s best submission [5] used this approach to generate
synthetic data starting from the TED LIUM corpus [21], the
only dataset allowed for ASR, which is comparable in con-
tent and slightly smaller in size than the IWSLT speech trans-
lation dataset. Similarly to that work, we decided to trans-
late the English transcripts of the En-Fr portion of MuST-
C, which accounts for 492 hours of speech and 280K paral-
lel segments. In a final experiment, we also translated the
transcripts from the En-Es portion of MuST-C, containing
slightly more hours than En-Fr. However, the inclusion of
this additional, highly overlapping content did not result in
further performance gains.

2.3. SpecAugment

SpecAugment [18] is a data augmentation technique that
works by modifying the input spectrograms. It is an online
technique as it is applied during training, and it is applied dif-
ferently at each training iteration. In practice, SpecAugment
is similar to dropout [22], as it zeroes out portions of the
input. Unlike dropout, however, it does not operate point-
wise but on entire rows and/or columns, de facto cancel-
ing sound events during time and/or entire frequency bands.
Each mask, either horizontal or vertical, takes two parame-
ters: starting position s and length l, both sampled from a
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distribution. Once the mask orientation is chosen (i.e. ei-
ther horizontal, vertical or both), all the values in the lines
(rows or columns) ranging from s to s + l are set to zero,
which is the mean value of the spectrograms after mean and
variance normalization. [18] proposes also time warping as
a third component for SpecAugment, but it also shows that
it is more computationally expensive than masking and the
improvement is marginal. For these reasons, we decided not
to use it.

3. Methods

3.1. Model architecture

We trained one model for MT and one for ST En-De. Since
both models are based on Transformer, here we first intro-
duce its general architecture. Then, we will move to our ST-
oriented adaptation.

Transformer [17] is an attentional encoder-decoder ar-
chitecture that consists of multiple layers of the same type
stacked together. The layers are slightly different in the en-
coder and in the decoder. Encoder layers consist of two sub-
layers: self-attention and feed-forward. The self-attention
sublayer uses the multi-head attention mechanism to com-
pute multiple parallel self-attentions of the input sequence.
The feed-forward layer is a stack of two affine transforma-
tions, where the first one is larger in size than the second
one, and it is also followed by a ReLU nonlinearity. Resid-
ual connections sum the input of every sub-layer to its out-
put, and the result of residual connections [23] is normal-
ized with layer normalization [24]. Transformer’s decoder
layers are similar to the encoder layers but they have an
additional cross-attention sub-layer after the self-attention.
Cross-attention computes multi-head attention of its input
with the output of the encoder.

Our ST model is the S-Transformer described in [16].
The difference with the original Transformer model is in the
part that precedes the first Transformer encoder layer. While
in MT this part is normally preceded by (sub-)word embed-
dings, S-Transformer processes the input spectrograms with
additional layers. First, the input is processed by two stacked
2D CNNs with kernel (3, 3) and stride (2, 2). The output
of the second CNN is then fed to a stack of two 2D Self-
Attention [25], which process the input with 2D CNNs and
compute attention along both matrix directions. All CNNs
are followed by batch normalization [26] and ReLU nonlin-
earity. Additionally, we use a logarithmic distance penalty
[16] in every self-attention layer in the encoder. Given a po-
sition i in the query vector, and a position j in the key vector,
with i 6= j we compute pen = log(|i − j|) and subtract pen
from the attention scores before softmax normalization.

The whole architecture is depicted in Figure 1, in which
the audio processing (on the left-hand side) is visually di-
vided by the Transformer’s encoder and decoder.



Figure 1: S-Transformer architecture for end-to-end speech
translation. On the left-hand side, we have the 2D process-
ing of the spectrogram. In the center, we find the usual Trans-
former encoder architecture with positional encoding and the
2 sub-layers of self-attention and FFN. On the right-hand side
we have the Transformer decoder consisting of the 3 sub-
layers of self-attention, cross-attention and FFN.

3.2. 2D self-attention

The output of the CNN layers is processed by a second bidi-
mensional, long-ranged mechanism called 2D self-attention
network (2DSAN) [25]. The input and the ouptut of the
2DSAN respectively have shape (ci, h, w) and (co, h, w),
where ci is the number of input channels and co is the num-
ber of output channels. The input tensor is processed by three
2D CNNs, each with m output channels, which generate the
three tensors Q, K, V , respectively the query, the key, and
the value of the attention [17]. Each of the m output channels
is used to compute a separate head of a multi-head attention.
Then, the three tensors Q, K, V are transposed and attention
is also computed using the frequency dimension to compute
similarity. Finally, the context vectors resulting from the at-
tention along the two dimensions are concatenated along the
channels dimension and the result is processed by a last 2D
CNN with co output channels. The data flow is depicted in
Figure 2.

3.3. Data Tagging

The most common way to use synthetic data is to concatenate
it with the clean data before starting the training procedure,
as it is done with back-translations in MT [27]. However, re-
cent research efforts [28] have shown that prepending a tag
to all the source sentences from the synthetic dataset leads to
better results as it makes the model able to recognize and bet-
ter handle noisy and clean data. In the tagging experiments,
we use one tag for the clean data and one for the synthetic
data, learning an embedding for each. Instead of prepend-
ing the tag to the input sequence as in [28], its embedding is
summed to all the elements of the sequence.

Figure 2: 2D attention. Green rectangles represent data,
while gradient bleu blocks represent operations.

4. Experiments
We performed our experiments on the MuST-C train, valida-
tion and test splits. This way, we could compare the results of
the present work with our published results on MuST-C [16].
For our final submission, we segmented the test set using a
VAD trained with the LIUM diarization tool [29], which is
the same used for last year’s test set release.

In the encoder, our end-to-end SLT models use 3× 3 2D
CNNs with stride (2, 2) and 64 output channels, 4 heads in
the 2D self-attention and output size of 64 units. The size of
the Transformer layers is 512, while the hidden size of the
feed-forward sub-layers is 1024. The Transformer layers in
the decoder have the same size of the ones in the encoder.
Both the encoder and the decoder have 6 Transformer layers.
Translation is performed at character level, with a vocabu-
lary for German of 176 entries. The final parameter count is
about 33M parameters. It is a small model, in particular if
we consider that the MT system has more than 250M param-
eters. All our models have been trained with the Adam opti-
mizer [30] using an initial learning rate of 3 × 10−4, which
increases linearly to 1×10−3 during 4000 warm-up steps and
then decreases with inverse square root decay [17]. Dropout
is set to 0.1 after every layer. As a further regularization,
we train all our models with labeled-smoothed cross-entropy
[31] with smoothing factor 0.1. The batch size is 4 segments
for each GPU, but we delay the updates for 16 iterations in
order to have large batch sizes. In the experiments with data
tagging, we build batches by taking 4 segments from the pool
of clean data, and 4 from the pool of synthetic data. As the
two datasets are not of the same size, we oversample the
smallest dataset (clean) in order to keep the training schedule
consistent.

To prevent out-of-memory errors, we discarded all the
training samples longer than 2000 steps in the source side
Unless specified differently, we trained our models on 4
GPUs Nvidia 1080 with 12GB of RAM each. The codebase
used for our experiments is FBK-Fairseq-ST2, our adapta-
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Model Test BLEU
(Di Gangi et al. 2019) 17.3
+ Synth Data 20.1
+ Tagged 21.5

Table 1: Training with synthetic data vs. baseline using only
MuST-C En-De.

Model Test Single Test AVG
(Di Gangi et al. 2019) 17.3 18.0
+ SpecAugment 18.9 19.3
+ Synth Tagged 22.2 22.7
+ Es Synth data 22.3 22.9
+ FT NO SpecAugment 22.5 22.3
+ FT long segments 22.1 23.0

Table 2: Results with SpecAugment only, SpecAugment and
synthetic data, and final fine-tuning without SpecAugment.
The models used for checkpoint averaging are then used in
our final ensemble decoding.

tion of fairseq [32] for end-to-end speech translation, which
is written in PyTorch [33].

5. Results
In this section, we first evaluate the effect of data augmen-
tation with synthetic data, then we add also SpecAugment.
As during training we remove many training segments be-
cause of GPU memory issues, we also run a fine-tuning with
a single GPU with larger memory in order to fit segments up
to 8000 frames. Finally, we show the improvement obtaiend
with checkpoint averaging and ensemble decoding.

5.1. Synthetic data

In Table 1, we compare our baseline (proposed in [16]) with
identical systems trained also on synthetic data. The first
system (Synth Data) simply concatenates the two sets of
clean and synthetic data, while the second system (Tagged)
tags clean and synthetic data differently. Surprisingly, al-
though the two training data portions are extracted from the
same pool of data (TED talks), and thus have a strong over-
lap, their simple concatenation obtains 2.8 BLEU points of
improvement over the baseline. Tagging them differently
leads to a further improvement of 1.4 points. These re-
sults indicate that end-to-end models can benefit significantly
from the addition of new data, even if the reference is auto-
matically generated. This observation paves the way for in-
teresting approaches to data augmentation that we leave for
future work.

5.2. SpecAugment

Table 2 shows the effect of training with SpecAugment.
When comparing the baseline with a system that differs
only for this aspect, we can observe an improvement of 1.6

BLEU points. When the training data is larger we observe
a smaller improvement, but we still get +0.7 points over
Synth Tagged. Finally, we have also experimented by
translating the Spanish portion of MuST-C into German and
adding it to the Synth data. However, with the further ad-
dition of this highly overlapping material, the improvement
is marginal. Although the improvement with SpecAugment
is limited, the results in ASR suggest that larger models can
benefit more from the augmentation effect of this technique.
In future work, we plan to train significantly larger models to
explore in this direction

5.3. Translation of long sentences

In our experiments, we noticed that our systems struggle to
translate long audio segments, for which the translation is
often suddenly truncated. Trying to overcome this issue,
we fine-tuned our models in a single GPU NVIDIA V100
with 16GB of memory and increasing the segment limit from
2,000 to 8,000. We did not perform training on such GPUs
from scratch because we could access to only one GPU of
this kind at a time, and training on 4 GPUs 1080 is faster. Un-
fortunately, although this procedure brought in 11,000 new
audio segments that were discarded before, there were no
visible BLEU score improvements (22.05) and we keep ob-
serving the truncation phenomenon. This is a problem that
we consider worth investigating further.

5.4. Checkpoint averaging and Ensemble decoding

At the end of the training phase, for each training run we av-
eraged the 5 checkpoints around the best one according to
the validation loss. The results, which are reported in the last
column of Table 2, show improvements for all models except
for the one obtained by fine-tuning without SpecAugment.
Finally, we performed ensemble decoding using all the mod-
els with the averaged checkpoints, and we achieved a score
of 23.4 on the test set of MuST-C. This is the final configu-
ration that we used for our IWSLT submission, which scored
15.8 BLEU points.

6. Conclusions

FBK’s submission to IWSLT 2019 focused on the English-
German end-to-end speech translation task. Our goal was to
test the technology (S-Transformer) and data (MuST-C) built
at FBK, in combination with state-of-the-art techniques for
data augmentation. Our results show that data augmentation
yields a significant improvement in translation quality, at the
price of training an additional MT system. Since our models
were constrained by GPU memory limitations, in future work
we plan to exploit methods that allow training larger models,
making a better use of larger datasets.



7. Acknowledgements
This work is part of a project financially supported by an
Amazon AWS ML Grant. We thank Mauro Cettolo for the
useful technical conversations.

8. References
[1] A. Bérard, O. Pietquin, L. Besacier, and C. Servan,

“Listen and Translate: A Proof of Concept for End-to-
End Speech-to-Text Translation,” in NIPS Workshop on
end-to-end learning for speech and audio processing,
2016.

[2] A. Bérard, L. Besacier, A. C. Kocabiyikoglu, and
O. Pietquin, “End-to-End Automatic Speech Transla-
tion of Audiobooks,” in Proceedings of ICASSP 2018,
Calgary, Alberta, Canada, April 2018.

[3] S. Bansal, H. Kamper, K. Livescu, A. Lopez, and
S. Goldwater, “Pre-training on High-resource Speech
Recognition Improves Low-resource Speech-to-text
Translation,” Proceedings of NAACL 2019, 2018.

[4] S. Bansal, H. Kamper, A. Lopez, and S. Goldwater,
“Towards Speech-to-text Translation without Speech
Recognition,” in Proc. of EACL, 2017.

[5] D. Liu, J. Liu, W. Guo, S. Xiong, Z. Ma, R. Song,
C. Wu, and Q. Liu, “The ustc-nel speech translation
system at iwslt 2018,” in Proocedings of IWSLT, 2018.

[6] M. A. Di Gangi, R. Cattoni, L. Bentivogli, M. Negri,
and M. Turchi, “MuST-C: a Multilingual Speech Trans-
lation Corpus,” in Proc. of NAACL, 2019.

[7] A. C. Kocabiyikoglu, L. Besacier, and O. Kraif, “Aug-
menting Librispeech with French Translations: A Mul-
timodal Corpus for Direct Speech Translation Evalua-
tion,” in Proceedings of LREC 2018, Miyazaki, Japan,
May 2018.

[8] M. Z. Boito, W. N. Havard, M. Garnerin, É. L. Ferrand,
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