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RÉSUMÉ
Les nourrissons doivent trouver des limites de mots dans le flux continu de la parole. De nombreuses
études computationnelles étudient de tels mécanismes. Cependant, la majorité d’entre elles se sont
concentrées sur l’anglais, une langue morphologiquement simple et qui rend la tâche de segmen-
tation aisée. Les langues polysynthétiques - pour lesquelles chaque mot est composé de plusieurs
morphèmes - peuvent présenter des difficultés supplémentaires lors de la segmentation. De plus,
le mot est considéré comme la cible de la segmentation, mais il est possible que les nourrissons
segmentent des morphèmes et non pas des mots. Notre étude se concentre sur deux langues ayant des
structures morphologiques différentes, le chintang et le japonais. Trois algorithmes de segmentation
conceptuellement variés sont évalués sur des représentations de mots et de morphèmes. L’évaluation
de ces algorithmes nous mène à tirer plusieurs conclusions. Le modèle lexical est le plus performant,
notamment lorsqu’on considère les morphèmes et non pas les mots. De plus, en faisant varier leur
évaluation en fonction de la langue, le japonais nous apporte de meilleurs résultats.

ABSTRACT

A rich literature explores unsupervised segmentation algorithms infants could use to parse their input,
mainly focusing on English, an analytic language where word, morpheme, and syllable boundaries
often coincide. Synthetic languages, where words are multi-morphemic, may present unique diffi-
culties for segmentation. Our study tests corpora of two languages selected to differ in the extent
of complexity of their morphological structure, Chintang and Japanese. We use three conceptually
diverse word segmentation algorithms and we evaluate them on both word- and morpheme-level
representations. As predicted, results for the simpler Japanese are better than those for the more
complex Chintang. However, the difference is small compared to the effect of the algorithm (with the
lexical algorithm outperforming sub-lexical ones) and the level (scores were lower when evaluating
on words versus morphemes). There are also important interactions between language, model, and
evaluation level, which ought to be considered in future work.

MOTS-CLÉS : variation interlinguistique, apprentissage statistique, segmentation des mots, acqui-
sition du langage.

KEYWORDS: cross-linguistic variation, statistical learning, word segmentation, language acquisi-
tion.



1 Introduction

Human infants are known to acquire a comprehension vocabulary of hundreds of words by two years
of age (Hoff, 2013), and probably accumulate a protolexicon consisting solely of word forms, with
no meaning attached, by the end of the first year (Ngon et al., 2013). Infants’ discovery of basic
units in their input has been modeled as follows. A transcript of infant-directed speech is converted
into phonological text, word boundaries are removed, and an algorithm is applied. Then, the word
boundaries posited by the algorithm (and the resulting word tokens) are compared against the adult
segmentation found in the original corpus.

By and large, two classes of algorithms have been heavily studied (Daland, 2009; Jarosz & Johnson,
2013). Algorithms in the lexical class are built to find the most economical system of minimal units
needed to reproduce the input. Those in the sub-lexical class aim to find local cues allowing the
learner to posit boundaries, for instance detectable via a dip in transitional probabilities. We will
discuss both in more detail below, but for now it suffices to say that both are plausible given known
infant experimental data (Mersad & Nazzi, 2012; Saffran et al., 1996a).

The present study represents the first systematic attempt to apply both types of unsupervised word form
discovery techniques to two morphologically diverse languages. In the next section, we summarize
previous work with the lens of morphological distinctions.

1.1 Morphological variability predicts performance in previous modeling
work

Most previous work modeling infant segmentation has focused on English (e.g. Lignos 2011; Venka-
taraman 2001; Christiansen & Curtin 2005; Phillips & Pearl 2015; Monaghan & Christiansen 2010) ;
yet this is not an "average" language for segmentation. English words are mostly monomorphemic
and monosyllabic, such that word, morpheme, and syllable boundaries usually coincide (DeKeyser,
2005).

Indeed, morphologically speaking, English can be classified as an analytic language, because most
words have few or no morphemes other than the root. Synthetic languages are characterized by having
richer inflectional morphology. They use morphemes such as prefixes, suffixes and infixes to convey
certain features (e.g., gender) and/or the relation between words in a sentence (e.g., via case).

Languages can vary greatly in the degree of synthesis. Some languages, such as Hungarian and Tamil,
are synthetic to a high degree, with a rich inflectional morphology in both nouns and verbs. Others
are more intermediate, including many IndoEuropean languages, such as Italian, Spanish, and French,
which have only a few suffixes in verbs and nouns. A distinction among synthetic languages that
we will not study but is worth mentioning is that between agglutinative and fusional languages. In
the former, morphemes are transparent and concatenated, whereas in fusional languages a single
morpheme contains many features.

Languages with a rich morphology are of particular interest in the context of segmentation. Since
complex words are formed by the combination of many easily separable morphemes, lexical al-
gorithms could break words up into the component morphemes (Batchelder, 2002). Additionally,
highly synthetic languages usually have longer words, and may have longer utterances (in number of
phonemes or syllables). Longer utterances mean more alternative parses can be posited, and thus more



uncertainty particularly (but not only) for lexical algorithms (Fourtassi et al., 2013). Moreover, lexical
algorithms often implement a drive for economy, whereby reuse of minimal units is preferred over
postulation of additional lexical units. This could specifically lead to problems for languages where,
by virtue of inflectional morphology, a lexeme has many surface forms, each used less frequently, and
where it may be more economical to break up the word into roots and affixes, which can be more
efficiently re-used.

Finally, corpora of such languages could contain fewer repetitions of each word token (since each
lexeme can have different surface forms) and thus a higher proportion of hapaxes than analytic
languages, which might affect performance in lexical algorithms where the probability of generating
a word is partially a function of its frequency. All the above predict better performance for less than
more synthetic languages, and for this difference to be more marked in the performance of lexical
than sublexical algorithms.

Overall, previous results support our main predictions, with synthetic languages yielding lower
segmentation performance than analytic languages. Fourtassi et al. (2013) applied a probabilistic
lexicon-building algorithm on English and Japanese. English (analytic) yielded a Token F-score of
0.77 and Japanese (synthetic-agglutinative) 0.69. Qualitative inspection suggested to the authors
that the algorithm broke apart morphological affixes, generating more oversegmentation errors for
Japanese than English, which fits the reasoning laid out above well.

This effect was replicated by Boruta et al. (2011) with another lexicon-based model, documenting
better results for English than French (synthetic-fusional), and for French than Japanese. The author
reported a higher proportion of hapax words in Japanese than for English, and a lower likelihood
of correct identification by the algorithm for hapaxes than words with more than one repetition.
Finally, results were dismal for Sesotho, another highly synthetic language characterized by even
more complex morphology than Japanese (Johnson, 2008).

Although the arguments above are most relevant to lexical algorithms, previous work using sub-lexical
ones also confirms the hypothesized trend. A diphone-based segmentation model developed by Daland
performed lower for the morphologically complex Russian than English. For their part, Saksida et al.
(2017) used a set of segmentation models based on transitional probabilities on a range of corpora.
English had a maximum score of 0.85, whereas Japanese, Tamil, and Hungarian, all synthetic, a
maximum of 0.75.

As in the lexical literature, other work even suggests differences among synthetic languages. In
Gervain & Erra (2012), better results were found for the less complex Italian than the more complex
Hungarian. The authors commented that there may be more oversegmentation in the latter language,
as some of the erroneously segmented words were real morphemes, which is interesting given that
this unsupervised algorithm has not been designed to be sensitive to lexical and morphological
composition.

2 The present study

The key question motivating this study is whether languages that vary in morphological complexity
differ in segmentability. To answer it, we looked for languages that were morphologically diverse, but
for which there were closely matched and comparable corpora. Previous authors have often argued
that lower performance for highly synthetic languages arises from oversegmentation, mainly based on



Language Verb agr. Split erg. Compactness Syncr. V syn. N syn.

Japanese none low cumulative none low 1

Chintang some medium distributive some high 3

TABLE 1 – Differences between the two languages according to (Bickel et al., 2013). Verb
Agr(eement), Split Ergativity of Case (proportion of ergative case alignments), Compactness, (Preva-
lence of) Syncr(etism), V(erbal) Syn(thesis), N(ominal) Syn(thesis).

qualitative inspection of results (but see Johnson 2008). To assess this question more systematically,
we inquired whether performance varied as a function of the level of linguistic representation on
which segmentation is evaluated. 1

Our goal was not to test an exhaustive list of languages, which was not feasible at present. Instead, we
opted to compare two language corpora which are part of the same database and have been transcribed
using the same guidelines. Additional desiderata included that the morphological difference of these
languages should be large and computationally assessed, and that other linguistic parameters such as
syllable structure should be in similar levels.

All of these considerations led us to the ACQDIV database of linguistically diverse languages
(Schikowski et al., 2015). Languages in this database have been sorted based on clustering algorithms
and according to several linguistic, typological variables. It may be worth pointing out that we did not
test our models on English here, as previous literature has extensively presented results on various
English corpora (some if it has been summarized above), and English did not exist in the chosen
database.

Thus, to best complement previous work, we selected two morphologically diverse non-IndoEuropean
languages present in the AcqDiv database, namely Japanese and Chintang (Bickel et al., 2013). 2

Even though the languages belong to the same morphological category (synthetic agglutinative), they
are very different in the degree of complexity.

Chintang is a polysynthetic language (i.e., having an extremely high ratio of morphemes per word), and
thus has a more complex morphology than Japanese. It has higher verb and noun synthesis (number
of categories expressed, word complexity – compare Paudyal 2015 for Chintang, and Kuno 1973;
Tsujimura 2013 for Japanese), with up to 10 morphemes per word in Chintang. The languages also
differ in that Chintang has distributive inflectional compactness (categories are expressed separately
in distinct morphemes), whereas Japanese has cumulative compactness (grammatical categories are
expressed cumulatively in fusioned affixes), which denotes the need for less morphemes than for
Chintang, as we can see in Table 1. As per our desideratum above, the phonological complexity
(phonemic inventory and syllabic structure) is similar across the two languages.

Most previous work used a single class of algorithms (but see (Ludusan et al., 2017)). Although
previous literature suggests that segmentation performance varies as a function of morphological type
for both lexical and prelexical algorithms, our reasoning above predicts that effects of morphological
complexity on segmentation should be stronger for lexical than prelexical algorithms. We therefore
included algorithms of both types.

1. Note that it is not unreasonable to propose that infants segment morphemes, rather than words (Phillips & Pearl, 2014).
2. Chintang is a language of the Kiranti subgroup of the Sino-Tibetan language family spoken in Eastern Nepal by about

6,000 speakers.



3 Methods

The Chintang recordings took place 4h (cumulated during several sessions carried out within a week)
per month, over 18 months, and involved 7 children aged between 6 months and 4 years and 4 months
of age (Stoll et al., 2016). For Japanese, recordings of 7 children aged 1 year 4 months, to 5 years 1
month, each lasting 40-70 minutes, were collected between once per week and once per month.

All child-directed and child-overheard speech had been carefully transcribed in a transparent orthogra-
phy (as was the child’s own speech, which was not analyzed here). We applied grapheme-to-phoneme
rules to derive the phonological representation of utterances. After processing, the Chintang corpus
contained 296,939 utterances, with an average of 2.7 words, 5.4 syllables, and 11.4 phones per
utterance ; and the Japanese corpus 264,945 utterances with an average of 3 words, 5.7 syllables, 11.2
phones per utterance). All utterances where morpheme annotation was incomplete were removed, so
the Japanese morpheme corpus after processing contained 85267 utterances with 2 morphemes, 3.2
syllables, 6.3 phones per utterance and the Chintang morpheme corpus contained 280319 utterances
with 4.5 morphemes, 5.5 syllables, 11.4 phones per utterance.

To perform inferential statistics, each corpus was divided in ten equal subparts based on number of
utterances. Within-sentence word boundaries were removed and fed to three models, which varied on
the cognitive strategies applied, as follows. 3

3.1 DiBS

For the sub-lexical Diphone Based Segmentation model (DiBS) (Daland, 2009; Daland & Pierrehum-
bert, 2011), segmentation decisions are based on the basis of diphone probabilities. A probability of
word boundary ranging from 0 up to 1 is assigned to each diphone found within every utterance. For
the present work, we are using one of the unsupervised version of DiBS called phrasal DiBS. 4 In
this version, the algorithm treats phrase edges as a proxy for word edges given the unquestionable
assumption that diphones spanning a phrase boundary are also spanning word breaks. It estimates
two parameters from the corpus, to be fed into the formula 1.

p(#|xy) = f(# ∧ xy)
f(xy)

(1)

where f(# ∧ xy) is the number of [xy] sequences with a phrase boundary in the middle, and f(xy)
is the the number of [xy] sequences in any position (Daland, 2009). When this ratio is higher than
a parameter called "probability of word boundary", then the system will make a hard decision that
there is indeed a break. The probability of word boundary is calculated using Formula 2.

Nw −Nu
Np−Nu

(2)

where Nw stands for number of words, Nu number of utterances, and Np number of phones.

3. We actually used the defaults in the WordSeg package (Bernard et al., submitted). For more information, visit
https ://wordseg.readthedocs.io/en/latest/algorithms.html

4. Other versions of DiBS, not used for this paper, are Baseline DiBS (where the boundary in f(# ∧ xy is the true
word boundary, and thus is fully supervised), and Lexical DiBS (which requires a small vocabulary to be provided by the
programmer, and thus necessitates additional assumptions as to how the child learned those words).



Notice that while Formula 1 requires nothing but a phone inventory and the phrase boundary location,
Formula 2 makes reference to the gold number of words, and thus can be said to be supervised.
Daland argues convincingly that this can be viewed as a convenient shortcut, rather than a design flaw
in the algorithm. Indeed, we can imagine children being born with a parameter akin to the minimal
word length requirement (McCarthy & Prince, 1986), or deducing them from other aspects of the
language (length of the shortest utterances, distance between stressed syllables, etc.)

In its original implementation, this model required that the input be coded in phonemes. To allow
direct comparison with previous work, we did not alter this requirement.

3.2 TP

The Transitional Probabilities (TP) family builds on the assumption that the transitional probability
between adjacent syllables is lower at word boundaries than at word middles (Gervain & Erra, 2012;
Saffran et al., 1996b; Saksida et al., 2017). Forward TP (FTP) is defined as

FTP (AB) =
f(AB)

f(A)
(3)

where f(AB) is the frequency of occurrence of the syllabic sequence AB and f(A) is the frequency
of occurrence of the syllable A.

Backward TPs (BTP) instead divides the product by the times the second syllable appears. P (B) is
the probability of occurrence of the syllable B.

BTP (AB) =
f(AB)

f(B)
(4)

Notice that these formulas simply provide an indirect estimate of how likely B is given A (or B, in
Formula 4) and thus are not sufficient to posit a boundary. In fact, the decision on whether to posit a
boundary between two syllables can be taken with at least two different methods. The Absolute TP
method (TPa) uses the average of the TPs over the sum of bigrams for the whole corpus as a threshold.
We can have either Backward TPa (BTPa) and Forward TPa (FTPa).

The Relative TP (TPr) cuts words when the TP value of a bigram is weaker than the TP of the
neighboring ones, so we have Backward TPr (BTPr) and Forward TPr (FTPr). For example, if AB is
a bigram in a sequence of XABY, then a boundary would be posited if Equation 5 is true.

TP (XA) > TP (AB) < TP (BY ) (5)

This model’s input is coded into syllables, so we syllabified the corpora using the Maximal Onset
Principle, according to which a syllable’s onset should be extended as much as possible, as long as it
stays phonotactically legal (Bartlett et al., 2009).

All previous work has analyzed corpora unitized at the level of the syllable, and not of phonemes,
as input to this family of algorithm. Although a TP version with phonemes as basic units, rather
than syllables, is cognitively possible, we preferred the latter in order to compare our results against
others’ using TP as it had been used in previous studies. Reviewers indicated this results in a loss



of comparability across models, given that the other two models are based on phonemes. If a reader
feels the same way at this point, we would like to underline here that our research goal was neither
to provide an exhaustive mapping of all models nor even to carry out specific comparisons across
the models. Our main research question, as stated above, concerns the effects of morphological
differences across languages. The use of varied models (defined as the conjunction of input and
processing decisions) allows us to assess whether patterns are observed despitemodelvariation, or
whether certain patterns may be only obvious for subsets of models.

3.3 AGu

The third model, a member of the Adaptor Grammar (AG) family, adopts a lexical approach (Gold-
water et al., 2009; Johnson & Demuth, 2010), meaning that it tries to find patterns of sequence of
units that repeat in the input and uses that lexicon to parse the input. It is technically a great deal
more complex than either of the models just discussed. For reasons of space, we provide a mainly
verbal explanation, and refer readers to Johnson et al. (2007) for a technical introduction to adaptor
grammars, including mathematical formulae and general properties.

In a nutshell, we use here a Pitman-Yor Adaptor Grammar, which is a generalized verion of probabi-
listic context-free grammars (PCGF) (Johnson et al., 2007). In context-free grammars, corpora are
generated as a function of the repeated application of a set of rewrite rules, which, in the process of
parsing/generating a corpus, are selected independently and at random. Contrastingly, in PCGFs, each
rule is assigned a probability, and the probability of a given parse is the product of the probabilities of
the rules that may have been invoked to generate the input text.

Briefly, a given Adaptor Grammar is described as a function of (N,T,R,θ,a/b) N is a finite set of
nonterminal symbols (in our grammar below, Sentence, Word, Phoneme), T is a finite set of terminal
symbols (in our grammar below, the actual phonemes of the language), R is a set of rewrite rules, θ
is a probability distribution over the different rules, and a/b are concentration parameters governing
re-use versus generation (as explained below).

For this study, the input was represented using phonemes, and we used a basic version of adaptor
grammar assuming no dependencies between words (unigram). For this reason, we will refer to our
implementation of the model in what follows as AGu. This is the simplest adaptor grammar one can
imagine, and it presupposes only two assumptions – (a) Sentences are composed of one or more
reusable words, and (b) Words are composed of one or more basic terminal units (phonemes). These
assumptions are encoded into rules enumerated below.

1. Sentence→Word (Word)
2. Word*→ Phoneme (Phoneme)
3. Phoneme→ a
4. Phoneme→ ...

The items on the left are non-terminals and those on the right may be lower-level non-terminals (as
in rewrite rules 1-2) or terminals (as in the remaining rewrite rules). Items between parentheses are
optional. Items with an asterisk can be generated de novo, or they can be added as rewrite rules during
parsing, and subsequently re-used throughout the corpus. Notice additionally that these rewrite rules
are equivalent to creating trees – for instance, the word "see" may be parsed as the application of rule
(2) followed by the rules expanding the Phoneme non-terminal into the terminal phonemes /s/, /i/.



As just mentioned θ is a vector corresponding to each and every rule in R, a number that represents
the probability of expanding the non-terminal on the left hand side of the given rule into possible
terminal(s) or non-terminal(s) on the right hand side. Let us imagine a parse where the system finds a
sequence A, which is a non-terminal. The Gaussian distribution GA corresponds to the set of trees
associated with the non-terminal A. For example, /sit/ could in theory be parsed as /s i/ or /si/ – GA

would establish that there is a probability p that corresponds to the tree resulting in the parse /s i/ with
and 1− p to the tree resulting in the parse /si/.

Recall that the system can parse the input using just the list of original rules, in which case the
generation of an utterance results from the repeated application of only rules 1-2 and the terminal
phonemes in the utterance. It can also, however, create new rules to shortcut this process. In the
implementation we use for this paper, we allowed the creation of rules as sequences of phonemes,
which effectively means we allowed the creation of a lexicon or morphological inventory, which can
be used to segment utterances into a sequence of words or morphemes (without using the ‘Phoneme
→ terminal‘ rules). In the version we are using (Johnson et al., 2007), probabilities for re-use versus
regeneration are based on the Pitman-Yor Process, a stochastic process of probability distribution
which pits the reuse of frequently occurring trees (or rules) versus creating new trees (or rules). 5

Specifically, this process is governed by the "concentration" set of parameters a and b, which determine
whether generated rules are costly and thus whether the system should be reusing rules or create
many new rules. For the sake of comparability with previous work, we used the values that had been
preferred for experiments on English, French and Japanese adult and child corpora at the time the
package was first used (e.g., Fourtassi et al. 2013), namely a=0.0001 and b=10000. To put this in
context, initially, the lexicon is empty (i.e., no shortcut rules have been created), so the first utterance
will be parsed as a sequence of words, each composed by phonemes, with this whole probability
distribution governed by GA. For simplicity, assume the system posits a single word – w1. The
second time the same sequence of terminals is found, the system can extract this word from the
adaptor’s lexicon (and hence it is w1), generate another rule with the same non-terminal, or generate
the word from scratch using GA. This whole process is repeated in several runs of 2000 times. Finally,
Minimum Bayes Risk is used to find the most common sample segmentations (Johnson et al., 2007).

4 Results

Recall that our main research question is whether there are differences in segmentability across
languages as a function of morphological complexity, particularly as the more complex language
(Chintang) may be oversegmented when the output is evaluated at the level of words (rather than
morphemes) and when using a lexical algorithm (AGu, as opposed to the sublexical DiBS and TPs).
To answer this question, we fit a regression model to token F-scores data declaring language, level,
algorithm and their interactions as independent predictors, and corpus as repeated variable (given
that the corpora had been cut into 10 subparts so as to be able to carry out inferential statistics). This
regression accounted for most of the variance in the data, R2 = .90 (F (23, 216) = 98.5, p < .001).

As predicted, the coefficient estimating the language effect between Chintang and Japanese is positive
(0.069), suggesting higher scores for the latter. Interestingly, this effect is smaller than that of level
(morpheme versus word, −0.11). The presence of all 2- and 3-way interactions, however, discourages

5. It is often described as the Chinese restaurant process, where new customers can be seated at a new table or an extant
table, and in the latter case they will tend to be placed in tables with many customers than tables with a few.



FIGURE 1 – Token F-scores across language and representational level. Models are marked by color.
Each "x" represents one of the ten subparts of each corpus.

a simple reading of these main effects.

As clear in Figure 1 there were strong interactions between all three factors (language, level, model).

5 Discussion

When combined with results from the previous literature, we confirm the generalization that complex
languages (such as the two studied here) lead to lower segmentation scores than morphologically
impoverished languages (such as English). Indeed, for all algorithms, we obtained lower scores for
Chintang and Japanese than English results previously documented. We focus on the word level for
this comparison, since previous work has systematically evaluated performance on this level, and not
the morpheme level. For AGu, we retrieve an average Token F-score of .54 for Japanese and .47 for
Chintang, whose performance is close to that for Sesotho (Johnson, 2008), another morphologically
complex language with high degrees of synthesis. Both are much lower than the .77 Fourtassi et al.
(2013) previously documented for English.

Our maximum Token F-score for TP was .66, below the .85 recorded for English and even the .75
recorded for agglutinative languages by Saksida et al. (2017). Finally, the score of .4 for DiBS is
similar to those recorded for Russian and much lower than the score registered for English (Daland,
2009).

How about the comparison between the two agglutinative languages included here? Our regression
documented an advantage for the less complex Japanese over the more complex Chintang. Although



results thus far confirm the prediction that the degree of synthesis affects segmentation, several aspects
of our results strongly suggest that the answer is not simple. The language effect here is small and not
the same for all models. In other words, even though part of the small effect could be attributed to
the fact that both languages are agglutinative, results clearly indicate that morphological complexity
is not the sole determinant for word segmentation, and invite a consideration within each algorithm
instead.

Our strongest predictions pertained AGu, whose results matched our predictions well, with higher
performance for Japanese than Chintang when evaluating on words. This language difference was
reduced when evaluating on morphemes. Also consistent with the proposal that AGu, and proba-
bly lexical algorithms in general, are ideal to recover recombinable units is the observation that
performance was overall higher for morpheme-based than word-based evaluation.

Readers may also notice that AGu achieves the highest scores, providing further evidence to previous
observations that lexical models tend to outperform sub-lexical ones (Ludusan et al., 2017). Although
this is a desirable feature, we point out that the fact that it is more affected by morphological variation
may make it implausible as a strategy for infants learning any and all languages.

As we had predicted by virtue of it being a purely phonotactic-based model, DiBS is less affected
by language or level differences. Most token F-scores are similar to the morphologically complex
Russian (.35), although markedly lower than English (Daland, 2009). However, Token F-scores
obtained with DiBS vary markedly for Japanese morphemes, some of them reaching 0.5. The best
explanation for these differences probably requires a recourse to phonological differences across the
languages (Daland & Zuraw, 2013), which is orthogonal to our key question.

The most complex patterns are found for prelexical TP. Morphological complexity did not have a
systematic effect on performance, as predicted, although we did find an interaction between subtypes,
levels, and languages that is not simple to explain briefly.

Scores were higher for morphemes than words for all TPa. This fits in observations by Gervain & Erra
2012, who found that absolute-threshold TP tends to oversegment. When evaluated in morphemes,
the greater number of boundaries is not a problem. Contrastingly, better performance for words than
morphemes for relative subtypes is not unexpected given that in this class a boundary can only be
posited in relatively long strings of syllables, and thus it will tend to undersegment when evaluated in
terms of morphemes. TPa may meet both desiderata of high performance and cross-linguistic validity.

5.1 Limitations and future directions

Clearly, our work barely scratches the surface in terms of segmentation differences and similarities
across languages. We would look forward to further research incorporating more languages to
investigate the impact of linguistic traits (both morpholexical, as studied here, and phonological, as
studied elsewhere Daland & Zuraw 2013; Fourtassi et al. 2013).

One obvious roadblock facing the generalization of the approach used here to other morphologically
varied languages is the sheer paucity of data, since there are overall few corpora of child-directed
speech in typologically diverse languages. In ongoing work (Bernard et al., submitted), we are
exploring the stability of results as a function of corpus size, to assess what is the minimum size
of corpus which would lead to generalizable results. Those analyses suggest that about 5,000 word
tokens may suffice – but that analysis was only based on English, and thus further methodological



research is needed to confirm and extrapolate to typologically diverse languages.

But if that approximation were confirmed, then the next roadblock is whether the data that have been
(a) morphologically parsed and (b) rendered comparable by e.g. using similar definitions of what a
sentence, a word, and a morpheme are. This, we believe, will be an even more challenging obstacle.
One of the reasons why we focused on only two languages was because of the way in which they had
been carefully curated to be as comparable as possible. Our approach could be generalized to other
corpora in AcqDiv which are large enough, although we believe substantial effort would be necessary
to generalize it even further to corpora repositories such as CHILDES (MacWhinney, 2014), where,
despite clear guidelines seeking to standardize input format, morphological and sentence parsing are
ultimately left to the discretion of each corpus’ curator.

As additional languages are studied, we hope future researchers retain our strategy of employing a
range of plausible models. For instance, as noted above, we focused here on general patterns that
were reproduced across different models. However, it would be interesting to "tweak" the models in
various ways. One obvious line for exploration would involve changing the input from syllables to
phonemes or vice versa, since each of the models used either one or the other, and current results in
infant research suggest infants have access to both levels of representation (e.g., Bertoncini & Mehler
1981; Seidl et al. 2009).

A more interesting path would be to change the concentration parameters a and b in the adaptor
grammar, which, as explained above, govern the reuse versus generation of new lexical items. It is
likely that these parameters affect performance, and some previous cross-linguistic work has indeed
varied them (Phillips & Pearl, 2014). Similarly, one could build more complex grammars, with various
levels of collocation to model the fact that words/morphemes are not independent of previous words –
and more generally, that there could be types of words/morphemes typically following each other (e.g.,
"the" will be followed by a noun or a noun phrase but rarely a verb in English). One consideration this
line of research will face is how the child plausibly "decides" which parameters to use and which sets
of rules to start with. That is, all of the implementations of the TP family are entirely unsupervised,
and DiBS only relies on one supervised parameter which could be replaced in the future with some
learning process. Both sublexical families are also extremely simple in terms of their processes and
internal architecture. This contrasts even with the AGu system we used, and thus it remains for future
work to assess to what extent the whole architecture can be derived in an unsupervised fashion.

5.2 Final conclusions

Both languages studied here yielded lower segmentation scores than those reported in previous
work applying the same algorithms to a morphologically simpler language (English). Moreover,
a regression suggested lower performance for the more complex of our two languages. However,
this regression also suggested complex patterns of interaction depending on the specific model and
the level evaluated (i.e., whether word or morpheme boundaries were considered). Future work on
additional languages and models would be desirable.
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