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Abstract
Knowledge distillation has recently been successfully ap-
plied to neural machine translation. It allows for building
shrunk networks while the resulting systems retain most of
the quality of the original model. Despite the fact that many
authors report on the benefits of knowledge distillation, few
have discussed the actual reasons why it works, especially
in the context of neural MT. In this paper, we conduct sev-
eral experiments aimed at understanding why and how dis-
tillation impacts accuracy on an English-German translation
task. We show that translation complexity is actually reduced
when building a distilled/synthesised bi-text when compared
to the reference bi-text. We further remove noisy data from
synthesised translations and merge filtered synthesised data
together with original reference, thus achieving additional
gains in terms of accuracy.

1. Introduction
Neural machine translation (NMT) achieves state-of-the-art
results in several translation tasks and for multiple language
pairs [1, 2]. Equivalent to its phrase-based predecessor, neu-
ral networks directly learn from parallel bi-texts, consisting
of large amounts of human created sentences with their cor-
responding translations. Therefore, the quality of an MT en-
gine is heavily dependent on the amount and quality of par-
allel sentences.

Several techniques aimed at boosting the quality [3, 4]
and quantity [5] of training data are successfully applied to
neural MT. Parallel to these techniques, knowledge distilla-
tion [6] has attracted the focus of many researchers given its
simplicity and the quality of the results. However, despite
the fact that a growing number of private entities have begun
to include distillation into their NMT systems [7, 8, 9] and
that knowledge distillation has demonstrated its performance
for multiple tasks [10, 11, 12], none of them give a detailed
analysis of the reasons why it works.

In most cases, the availability of parallel corpora is a pre-
requisite to build Neural MT systems. The process of com-
piling parallel bi-texts is usually composed of several steps:
crawling, filtering, cleaning, etc. As a result, parallel corpora
usually contain parallel sentences that are often not as par-
allel as one might assume. And even for parallel sentences
that truly convey the same meaning, in some cases transla-
tions follow a more or less word-for-word pattern (more lit-

eral translations). While in many other cases, translations
show greater latitude of expression (more flexible transla-
tions) with higher degrees of variability, which humans often
judge as good. However, machine translations are usually
“closer” in terms of syntactic structure and present lower lev-
els of variability when considering word choice. It is rather
an intuitive idea that feeding more “literal” translations to
a neural MT network should facilitate the training process
compared to training with less literal translations (original
bi-text).

In this paper, we report on the results of experiments
where we automatically distill a human translation bi-text
which is then used to train neural translation engines. Thus,
aiming at boosting the learning ability of neural translation
models. We show that the resulting models perform even
better than a neural translation engine trained on the original
reference dataset.

Our contribution is as follows:

- We analyse the reason why and how distillation works
for neural machine translation.

- We analyse in detail the difference between original
reference translations and synthesised translations.

- We further filter out noise from synthetic data and mea-
sure the impact on using both synthetic and reference
translations.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly surveys previous work. Section 3 outlines our
neural MT engine and details the distillation approach pre-
sented in this paper. Sections 4, 5 and 6 report training con-
figurations and experimental results with detailed analysis.
Section 7 draws conclusions and outlines future work.

2. Related Work
Sequential knowledge distillation for neural machine trans-
lation was first detailed by [6]. The authors trained a smaller
student network to perform better by learning from a larger
teacher network allowing more compact neural MT models
to be built. [7] followed this idea and proposed a similar
language simplification method based on distillation. They
reported improvements on English to German and English to
French translations. [8] further demonstrated distillation ex-
periments from both an ensemble teacher model and a single
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model. After that, they improved training efficiency and per-
formance by removing noisy sentences from the training cor-
pus. As a comparison, we performed detailed experiments
and analysed the reasons why and how distillation works for
neural machine translation.

Other than neural MT, [10] and [11] show that distillation
also works well when transferring knowledge from a network
ensemble or from a large highly regularised model into a
smaller, distilled network for image classification and speech
recognition. [12] applied distillation based on a search based
structured prediction on dependency parsing and machine
translation. These works demonstrate that knowledge dis-
tillation is adapted to many different tasks. In this work, we
focus on the influence of knowledge distillation to neural ma-
chine translation and suggest directions for further improve-
ments.

3. Neural Machine Translation
We train two types of NMT systems in this work, an RNN-
based model and a Transformer-based model. The RNN
model follows the architecture presented in [13]. It is im-
plemented as an encoder-decoder network with multiple lay-
ers of an RNN with Long Short-Term Memory hidden units
[14]. The Transformer model follows the work in [15]. It
encodes the representation of sentences in a way a self at-
tention only and is reported as the current state-of-the-art in
many machine translation tasks [1, 9].

For the RNN model, the encoder is a bidirectional neural
network that reads an input sequence s = (s1, ..., sJ) and
calculates a forward sequence of hidden states (

−→
h1, ...,

−→
hJ),

and a backward sequence (
←−
h1, ...,

←−
hJ). The decoder is an

RNN that predicts a target sequence t = (t1, ..., tI), being
J and I respectively the source and target sentence lengths.
Each word ti is predicted based on a recurrent hidden state
hi, the previously predicted word ti−1, and a context vec-
tor ci. We employ the attentional architecture from [16] and
use the implementation of OpenNMT1. Additional details are
given in [17].

Unlike the RNN model, the Transformer model directly
models the representations of each sentence with a self-
attention mechanism. Hence, it reduces the number of op-
erations related between tokens in different positions, espe-
cially for distant positions, in input and output sequence. The
Transformer model stacks a so-called multi-head self atten-
tion layer and a position-wise, fully connected layer for non-
linear conversions on both the encoder and decoder side. On
the decoder side, it uses masked self-attention to prevent po-
sitions to attend to unseen positions.

The notion of time step is encoded automatically in the
sequence in the RNN model. Whereas the Transformer
model uses positional embedding to record the position infor-
mation of each word in the sequence. In addition, the Trans-
former model is easy to be parallelized for the MLE training

1https://github.com/OpenNMT/OpenNMT

process across multiple GPUs. This allows the benefit of ac-
celerating the training speed compared with the RNN model.
In this work, we use the implementation of OpenNMT-tf 2 to
train our Transformer based systems.

3.1. Knowledge Distillation

Knowledge distillation is a method to train different deep
neural networks on the same data. Information learned from
a large teacher model with the original reference data can be
learned quite well with a smaller student model with the syn-
thesised data [10]. Thus, a compact smaller model is gener-
ated and used to replace the larger model, especially in some
resource limited devices.

For machine translation, we follow the approach de-
scribed by [6]. The machine translation model is trained
to minimise the Kullback-Leibler divergence, either between
the model distribution and ground-truth distribution LNLL,
or between the model distribution and synthesised data dis-
tribution LKD, which is from the teacher system, or an inter-
polation of both:

L = (1− α) · LNLL + α · LKD

In [6], three distillation methods are proposed by tun-
ing the weight (α) in sequence-level loss. We simplify this
process and perform experiments with α = 1 in this work.
First, we train a teacher system with the original source/target
data. Second, we train another student system with the
source/synthesised target data. The synthesised target lan-
guage data is generated by running beam search (with beam
size 5) over the training set with the teacher system (forward
translation),

The objective during the training of the student system
is the same as the teacher system. The only difference is
the student system’s objective is not to maximise log likeli-
hood toward the ground-truth reference, but toward a gener-
alised “soft” target, which is from the teacher system. From
this point of view, the student system is directed by how the
teacher system acts. Hence, in general a stronger teacher sys-
tem is preferred. E.g. an ensemble teacher system is used in
[8].

4. Experimental Conditions
4.1. Data

Experiments are performed using a preprocessed and to-
kenised version of WMT English-German translations3. The
training set contains 4.5M sentence pairs. We use news-
test2013 as validation set and both newstest2014 and new-
stest2015 as test sets. We applied joint byte-pair encoding
(BPE) [18] with 32K merge operations. The actual training
vocabulary size is of 34K tokens after BPE tokenization. We

2https://github.com/OpenNMT/OpenNMT-tf
3The corpus is already tokenised and can be downloaded from https:

//nlp.stanford.edu/projects/nmt
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tfm
Large N=6, d=512, dff=4096, h=8
Middle N=6, d=512, dff=2048, h=8
Small N=4, d=256, dff=2048, h=8

rnn
Large Bi-LSTM, 4x1024, emb=512
Middle Bi-LSTM, 2x1024, emb=512
Small Bi-LSTM, 2x512, emb=512

Table 1: Configurations of the networks used in this paper. In
the remainder of this paper we use respectively tfm.L, tfm.M, tfm.S,
rnn.L, rnn.M and rnn.S to represent systems trained with different
configurations.

limit sentence length to 100 in both source and target sides
(excluding 0.31% of the training corpus). After decoding, we
remove BPE joiners and evaluate the tokenised output with
multi-bleu.perl [19].

4.2. Network Configuration

In this paper, we employs several neural MT models based
on the Transformer [15] and RNN [13] models. Three dif-
ferent systems are used for each architecture, which differ in
network size. Details of the system configurations are given
in Table 1.

For RNN based systems, we use stochastic gradient de-
scent, a mini-batch size of 64 in segments with dropout prob-
ability set to 0.3. We train our models during 18 epochs and
evaluate the performance of the last epoch. Initial learning
rate is set to 1.0 and we start decaying after epoch 10 by a
fixed decay rate of 0.7. In decoding, we use a beam size of
5.

In the case of Transformer systems, we use Lazy Adam
optimiser, which starts the learning rate at 1.0. We train
the systems with a batch size of 8, 192 in tokens and save
checkpoints in every 5, 000 steps. We terminate training af-
ter 400K iterations and average the last 8 checkpoints to get
the final evaluation.

5. Analysis of Synthetic Translations
Aiming for a better understanding of the translated lan-
guages, we first conduct an elementary human analysis of the
German hypotheses (synthesised translations) produced by
the best performing network. We observe that in many cases,
automatic translations produced by our neural MT systems
consist of paraphrases of the reference translations. While
both, reference and automatic translations, preserve the same
meaning and are grammatically correct, automatic transla-
tions are closer in terms of syntactic structure to the source
sentences than reference translations, which seams a key fac-
tor to train machine translation systems.

Examples in Table 2 illustrate this fact. In the first ex-
ample, the English and German synthetic sentences follow a
very similar structure. While in the German reference trans-
lation, the sentence: you are sure to find the nightclub you
like is expressed by clubbers (Disco-Gänger) are guaranteed

Figure 1: Histogram indicating the percentage (%) of source
words aligned to n (x-axis) distinct target words in the train-
ing set.

to get their money (common garantiert auf ihre Kosten). In
the second example, we can see a very similar situation. The
verb verwendet is shifted to the end of the sentence when
comparing the structure of the English and the German syn-
thetic sentences. In contrast, the reference German transla-
tion employs a greater latitude of expression.

Next, we conduct several experiments in order to con-
firm the hypothesis that automatic translations are closer to
the input sentence than reference translations. We compare
reference German translations (ref ) to automatic translations
(syn) produced by our neural MT network over the entire
training set. In our experiments, we employ word alignments
computed using fast align4.

5.1. Translation Fertility

First, we measure translation fertility. We identify the num-
ber of different target words aligned to each source word in
the training corpus. We regard this number as the “fertility”
between parallel sentences. Figure 1 shows a histogram in-
dicating the percentage of source words aligned to n distinct
target words.

As it can be seen, English words are in average related
to less German words in the case of the automatic transla-
tions (syn) than for reference translations (ref ). 70.1% of
English tokens are aligned to a single German token in the
case of automatic translations while this number is reduced to
48.6% in the case of reference translations. As expected, the
opposite situation is also observed when considering target
words aligned to multiple source words. In this case, refer-
ence translations show always a higher percentage of tokens.

5.2. Translation Distortion

In addition, we compare the translation distortion in order to
validate the closeness (similarity) of syntactic structures. The
translation distortion is calculated by the number of crossed
alignments on automatic (syn) and reference (ref) transla-
tions. Given a sentence pair with its set of alignments, we

4https://github.com/clab/fast_align
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Src: [In Cala Ratjada]1 [you are sure to find]2 [a nightclub]3 [you like]4.
Ref: Disco-Gänger kommen [in Cala Ratjada]1 garantiert auf ihre Kosten.
Syn: [In Cala Ratjada]1 [finden Sie sicher]2 [einen Nachtclub]3, [den Sie mögen]4.
Src: [Your personal information]1 [will only be]2 [used]3 [to process your booking]4.
Ref: Sie [werden nur]2 in dem Umfang weitergegeben , wie es [für eine Buchung]4 notwendig ist.
Syn: [Ihre persönlichen Daten]1 [werden nur zur]2 [Bearbeitung Ihrer Buchung]4 [verwendet]3.

Table 2: Examples of English-to-German translation. Subscripts in these examples indicate the alignment between multi-words
expressions.

Figure 2: Difference in number of crossed alignments (in
percentage (%)) between reference and synthesised transla-
tions. 0 means no crossed alignment, i.e. monotonic, be-
tween source and target sentences.

compute for each source word si the number of alignment
crossings between the given source word and the rest of the
source words. We consider that two alignments (i, j) and
(i′, j′) are crossed if (i−i′)∗(j−j′) < 0. Figure 2 illustrates
the difference in number of crossed alignments between ref-
erence and synthetic translations.

As it can be seen, automatic (syn) translations show a
higher number of words with no crossed alignments (49.2%)
than reference (ref ) translations (39.8%). In contrast, when
considering larger numbers of crossings, the reference data
set shows higher ratios than the automatic data set. This
shows the synthesised target is much “closer” to the source
in grammatical order compared with original reference.

Note that automatic translations carry important levels of
noise (translation errors) that cannot be neglected from the
view of a human. However, since it’s the generalised out-
put from the teacher system, it is indeed compatible to the
machines. The next section evaluates the suitability of auto-
matic translations as a training set for our neural MT systems
compared to reference translations.

6. Results
6.1. Basic systems

We first summarise translation accuracy results (BLEU
scores) of our 6 basic systems learned over the reference
training set. As shown in Table 3, systems implementing the

Config newstest2014 newstest2015
tfm.L* 27.87 30.04
tfm.M* 27.59 29.73
tfm.S 24.60 27.58
rnn.L 24.11 26.62
rnn.M 24.11 26.74
rnn.S 22.94 25.85

Table 3: BLEU scores on systems trained over the original
dataset. Systems with * are candidates for teacher systems.

Transformer architecture outperform RNN networks. The
best score is achieved by tfm.L, which is 27.87 for new-
stest2014 and 30.04 for newstest2015. The smallest trans-
former network (tfm.S) clearly outperforms the largest RNN
network (rnn.L) in about 0.5 BLEU points for newstest2014.
We choose the best two systems tfm.L and tfm.M as the can-
didates for teacher systems.

According to BLEU scores, similar performance is ob-
tained by large and middle size versions of the Transformer
and RNN models. However, the smallest systems show a
clear drop in performance for both architectures. We argue
that, when the network is big enough, the performance relies
more on the amount of training data. That is, if the training
data is fixed, there is a proper size of the neural network to
learn the information embedded inside this training data. An
even larger network could achieve a better performance, but
not significantly.

6.2. Comparison between different teachers

For the distillation based method, the teacher system is im-
portant because its output will be used as the student’s train-
ing reference. As shown in [8], a student system trained
with an ensemble teacher usually performs better than that
trained with a single teacher system. In our experiments, we
train student systems based on a single teacher system. Ta-
ble 3 shows that system tfm.L achieves similar accuracy com-
pared with system tfm.M with original dataset. This means
that there is no major difference between tfm.L and tfm.M,
and these two systems can both be used as teacher systems.
Therefore, in this section, we compare the performance be-
tween student systems trained on different teachers. We show
that a strong teacher will lead to better students. Results are
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Student
System

Teacher
System

newstest
2014

newstest
2015

tfm.S
tfm.L 26.07 28.96
tfm.M 25.33 27.79

rnn.S
tfm.L 24.84 27.99
tfm.M 24.22 27.10

Table 4: Results of comparison between different teacher
systems.

shown in Table 4.
Both student systems outperform basic systems trained

with original data (in Table 3). For newstest2014, systems
trained with original reference data achieve 24.60 for model
tfm.S and 22.94 for model rnn.S. When systems are trained
with synthesised data from teacher system tfm.L, the perfor-
mance improves to 26.07 (+1.47) and 24.84 (+1.90) respec-
tively. This proves the distillation method works for neural
machine translation.

We also notice that the difference between the two
teacher systems tfm.L and tfm.M trained with original data
is 0.28 for newstest2014. However, the difference between
same student model trained with these two teachers increases
to 0.74 for tfm.S and 0.62 for rnn.S. We argue that this is
because of noisy data present in the synthesised target side.
We found from the training synthesised data that some tar-
get sentences are exactly the same regardless of the source
sentences. We further checked the original reference target
sentence and confirmed that it is because the original bi-text
is not parallel (noise in the original training data). During
the training of the teacher system, neural models tend to nor-
malise all these “bad” instances into a uniformed one by min-
imising the log likelihood. However, during the training of
the student system, such noise is amplified and leads to the
larger gap between the different systems. We therefore anal-
yse in detail the influence of noise in the next section.

6.3. Influence of synthesised data noise

Based on Table 4, we can conclude that a stronger teacher
is usually beneficial to train student systems. Similarly,
we compared two similar student systems rnn.M and rnn.S
based on teacher tfm.L. We found rnn.M can achieve 26.22 in
BLEU score in newstest2014, which is +1.38 BLEU points
higher than rnn.S. We therefore choose tfm.L as our teacher
system and tfm.S and rnn.M as our default student systems in
the following experiments. In this section, we train tfm.S and
rnn.M with a different proportion of the synthesised data to
see the influence of data noise for student systems.

As we showed in section 5, the synthesised data is the
translation of the whole training set by a teacher model.
Sequences in these generated hypotheses contain noise as
they are from machine translated results. Noise includes un-
grammatical sentences, wrong words selection, word order-
ing problems, etc. Also there are inconsistent target sen-

synthesised
data

newstest
2014

newstest
2015

tfm.S
100% 26.07 28.96
95% 26.24 29.42
90% 26.20 29.21

rnn.M
100% 26.22 28.87
95% 26.11 28.92
90% 25.98 28.80

Table 5: Impact on different amounts of synthesised data for
student systems by removing noisy data from the output of
the teacher system tfm.L.

tences with the source in semantic and under/over transla-
tion5 problems in the synthesised data. We regard all these
problems as noise because they are not correct translations.

We use an embedding based method proposed by [20] to
calculate the similarity between source and target sentences.
In [20], a sentence embedding was first built based on word
similarity, relying on a neural architecture, which is able to
identify several types of cross-lingual divergences. The re-
sulting embeddings are then used to measure semantic equiv-
alence between sentences6. In our case, the target sentences
are synthesised data from a teacher system. We filter out sen-
tence pairs which are not similar based on the similarity score
and train the student system with the remaining data. Table 5
shows the results from distilled tfm.S and rnn.M systems.

We compare two different student systems, Transformer
based tfm.S and RNN based rnn.M. For rnn.M system, we
can not see any gains by removing different proportions of
noisy data. While for tfm.S system, when we remove 5%
noisy data, we found an increase from 26.07 to 26.24 (+0.17)
in BLEU score for newstest2014, which is also the best per-
formance we have achieved until now.

We argue that the Transformer based system is more sen-
sitive to the noisy data compared with the RNN based sys-
tem. When a little amount noisy data (e.g. 5%) is removed,
the performance improves because the remaining 95% is
enough to train a good system. Along with the further re-
duction to 90%, both the Transformer based model and the
RNN based model starts to decrease because there are fewer
instances used for training. This also shows that the size of
training data is another crucial factor to the final accuracy.

Another interesting phenomenon is that the differences
between student systems with different architecture are not
so big compared with systems trained with an original ref-
erence. In this experiment, rnn.M performs well compared
with tfm.S given synthesised training data, while it is not the
case for them to be trained with original data. We speculate
that this is because the diversity in distilled bi-text is much

5During translating, under translation is when the words/phrases in
the source sentence are missing (not translated) in the target side. Over
translation is when there are duplicated translations for the same source
words/phrases present on the target side.

6https://github.com/jmcrego/similarity
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merged data
(hyp+ref)

newstest
2014

newstest
2015

tfm.S

95%+5% 26.27 29.09
90%+10% 26.20 29.11
80%+20% 25.76 28.88
50%+50% 25.58 28.54

rnn.M

95%+5% 25.94 28.83
90%+10% 25.52 28.76
80%+20% 25.66 28.44
50%+50% 25.04 27.60

Table 6: Results of merged corpus with synthesised data and
original data. 95%+5% means the training data is composed
of 95% data from the synthesised target translations (hypoth-
esis) according to the similarity and additional 5% data from
original target data (reference).

less than in the original reference. Systems with different ar-
chitecture show different sensitivity of data diversity. That
is also to say, the distilled bi-text is consistent and compact,
which is much suitable for training machine translation sys-
tems.

6.4. Replacing noisy data with the original reference

Previous experiments show that systems trained with synthe-
sised data usually perform better than systems trained with
original reference data. At the same time, when we remove
some noisy data from the synthesised training set, there is
further improvement for the student system. In this section,
we test experiments with merged synthesised data and the
original reference as the training corpora to see which part is
more crucial for the final performance.

First, we use a similarity score between source and tar-
get sentences calculated beforehand to rank the synthesised
data. We select top X% “similar” data and for the remaining
(1 − X%) data, we replace the target side with the original
references to merge into a new data set. Table 6 shows the
evaluation results on two student systems tfm.S and rnn.M.

Results show that synthesised data greatly contribute to
the final accuracy. Along with the increase of data from the
synthesised target side, the performance increases as well for
both tfm.S and rnn.M. However, when comparing with sys-
tems trained with 100% synthesised data or systems trained
with 95% synthesised data, the performance is different be-
tween the Transformer and RNN based models.

For tfm.S, when training with merged 95% data, the sys-
tem reaches its highest performance in newstest2014. As for
rnn.M, on the contrary, the performance starts to drop a lit-
tle. It is even worse than training with the filtered 95% syn-
thesised data. We argue this inconsistency stems from the
architecture differences. The performance of the RNN based
model is difficult to be improved. However, the Transformer-
based model, due to its sensitivity to data diversity, can per-
form quite well as long as the training data is well controlled.

2X data
(hyp+ref)

newstest
2014

newstest
2015

tfm.S 100%+100% 25.95 28.74
rnn.M 100%+100% 25.78 28.85

Table 7: Results of the concatenated synthesised data and
original reference. Twice the training cost is needed as the
corpus is doubled.

6.5. Doubled training data

Lastly, we combine the synthesised data with the original ref-
erence. This will double the training data size and lead to
twice the training cost. However, based on the results shown
in Table 7, we found that even though the data size was dou-
bled, we could not achieve further improvement.

We analyse that this is because the synthesised data is
generated from the teacher system. All the information em-
bedded in the synthesised data is already in the original data.
In other words, adding such synthesised data is somewhat
equivalent to adding the same original data. It is similar to
training the system with the same data but with a 2X data
size. Furthermore, considering noise existed in the synthe-
sised data, systems trained with this 2X data is even worse
than the original doubled data.

7. Conclusions
We have presented distillation experiments for neural ma-
chine translation. Results indicate the suitability of using
synthetic translations to train neural MT systems. Higher
accuracy results are obtained by the systems when trained
using synthetic data. We show data noise present in both the
original translation references and synthesised translations is
a key factor that influence the final performance.

Meanwhile, the Transformer-based and RNN-based sys-
tems perform differently given different amounts of syn-
thesised and/or merged data. We further prove that much
“closer” translations contribute the most to the system’s ac-
curacy and that is also the reason why distillation works for
neural machine translation.

In conclusion, we summarise that for neural machine
translation:

- Having a stronger teacher system usually helps the stu-
dent systems.

- Removing noise from the synthesised data of teacher
systems also helps.

- Replacing noisy data with the original reference data
can get further improvements.

A clear drawback of distillation-based methods is the ef-
ficiency of the training process. Student systems must be
trained after the teacher system. In addition, we must also
consider the cost of translating the entire training set. As
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such, one solution is to integrate this procedure during the
training process. Since data noise is one of the key factors
during training, we believe that identifying noisy instances
during training may alleviate the time problem. We leave
that for future work.
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