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Abstract 

This paper describes our speech translation system for the 

IWSLT 2018 Speech Translation of lectures and TED talks 

from English to German task. The pipeline approach is 

employed in our work, which mainly includes the Automatic 

Speech Recognition (ASR) system, a post-processing module, 

and the Neural Machine Translation (NMT) system. Our ASR 

system is an ensemble system of Deep-CNN, BLSTM, TDNN, 

N-gram Language model with lattice rescoring. We report 

average results on tst2013, tst2014, tst2015. Our best 

combination system has an average WER of 6.73. The machine 

translation system is based on Google’s Transformer 

architecture.  We achieved an improvement of 3.6 BLEU over 

baseline system by applying several techniques, such as 

cleaning parallel corpus, fine tuning of single model, ensemble 

models and re-scoring with additional features. Our final 

average result on speech translation is 31.02 BLEU. 

1. Introduction 

We have participated in the Speech Translation of lectures and 

TED talks from English to German task. The goal of this task 

is to translate fully un-segmented talks or lectures from English 

to German. 

A pipeline approach is employed in our work. It consists of 

segmentation of audio data, ASR system, punctuation 

restoration and NMT system. A two pass decoding is used in 

the ASR system. In the first pass, we use several different neural 

network, such as Deep-CNN [1] [2], BLSTM and TDNN [3] to 

generate ensemble results. Then the decoding lattices of the 

ensemble system are sent to a second pass decoder for lattice 

rescoring. In order to bridge the gap between the output of ASR 

system and training data of NMT system, punctuation 

restoration, disfluency detection and inverse text normalization 

are necessary in our pipeline. Our NMT system is based on the 

Transformer architecture [4], which is based solely on attention 

mechanisms. Several techniques are adopted to improve our 

system, such as parallel corpus cleaning, fine tuning, model 

ensembling and re-scoring with additional features. 

The rest of this paper is structured as follows. Section 2 

describes the details of our ASR system, and Section 3 describes 

our NMT system. Our results in the speech translation task are 

presented in Section 4. We conclude this paper in Section 5. 

                                                           
1https://github.com/kaldi-

asr/kaldi/blob/master/egs/ami/s5b/local/run_cleanup _segmentation.sh  

2. Automatic speech recognition 

 

2.1. Audio Segmentation 

In this evaluation, the test set is provided without manual 

sentence segmentation, thus automatic segmentation of the final 

test set is essential. We utilize an approach to automatic 

segment audio data based on the signal energy. We set a 

threshold to split the audio between 8 and 15 seconds and then 

concatenate utterances that are shorter than 8 seconds to its 

neighboring utterances.  

2.2. Audio Data Preparation and Feature Extraction 

2.2.1. Data Cleaning 

Our acoustic data comes from two sources. The first is the TED-

LIUM [5], which contains 340 hours of well transcribed data. 

The second part comes from Speech-Translation TED corpus, 

which is about 270 hours of data with some bad segments, e.g. 

music or transcriptions not comparing the wav files. We follow 

the way in kaldi toolkit [6] to do the cleaning1. This aimed to 

cut the bad part off and only retrain the segments that can be 

compared with the transcripts. And we got about 220 hours in 

this part. 

2.2.2. Dereverbration 

For speech dereverbration, we calculate the RT60 [7]  of the 

speech firstly. The speech whose RT60 is longer than 400ms is 

filtered with the Kalman filtering algorithm [8] to dereverberate 

the speech. Thus we get about 11,000 kalman filtered utterances 

and add them to the original data. 

2.2.3. Speed Perturbation 

Speed perturbation is done with 1.1 and 0.9 times for all the data 

above. Finally we obtain about total 1700 hours acoustic data to 

get robust performance in the end. 

2.2.4. Feature Extraction 

Our acoustic feature engineering is not complicated. The system 

is built using several different features including 39-

dimensional MFCC for GMM, 40-dimensional static MFCC 

and 80-dimensional filter banks for neural networks. These 

features can be augmented with i-vectors to train speaker 
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adapted networks. The dimension of i-vectors is chosen to be 

200 which is extracted from every 50 frames. I-vectors and 

features are combined in the input layer for TDNNs and 

BLSTMs. While for CNN, input layer only contains filter bank 

and i-vectors are combined with the fully-connected layer 

before the output. We also extracted fMLLR transformed 

feature on 340hr TED-LIUM data and found fMLLR features 

contribute no significant improvement compared to i-vector 

augmented system. So we only use i-vector to train our final 

speaker adapted systems. 

2.3. Acoustic Modeling 

We use DNN-HMM hybrid acoustic model for all our ASR 

experiments. All NN systems were trained using Lattice-free 

MMI (LF-MMI) [9] loss function with low frame rate (LFR) 

equals to 3 to predict context dependent phones (bi-phone). We 

mainly used three different types of neural net architecture, 

including deep convolutional neural network (DCNN), 

bidirectional LSTM (BLSTM) and time delayed deep neural 

network (TDNN). In GMM-HMM part, we use 13-dimension 

mel frequency cepstral coefficient (MFCC) with first and 

second derivatives with 500 hours data without speed 

perturbation. The dictionary provided in the TED-LIUM dataset 

is used for our GMM training. The final GMM has totally 

150,193 Gaussian mixtures, correspond to 4056 states. This 

500hr GMM-HMM was used to align all the 1500h data to 

generate state alignments for clustering bi-phone labels used in 

LF-MMI training. After clustering we finally get 3144 bi-

phones which equal the output nodes number of all our neural 

networks. 

2.3.1. Deep CNN 

We were inspired by the VGG net [10] and the deep CNN 

architecture used in [1] [2] to design our CNN model. We train 

our DCNN model with 80 dimension filter bank feature without 

first and second derivatives. We use batch normalization (BN) 

and ReLU nonlinear activations following each convolution 

layer. We stack 31 layer of such conv-BN-ReLU block with 

residual connections around every two of them. Most of the two 

dimensional time-frequency convolution kernels are all set to 3 

x 3 with stride 1x1. We set kernel size to 5 x 5 with stride 2 x 1 

in the 6th, 12th, 24th, 30th convolution layer to reduce the 

frequency dimension from 80 to 5. Every time we reduce the 

frequency dimension we double our kernel number. So as we 

go deeper, the kernel number is set to 32, 64, 128, 256, and 384. 

We train such DCNN with all the 1500h data to obtain system 

dcnn. 

2.3.2. BLSTM 

Our BLSTM model consists of 5 layers that has two 

unidirectional LSTM with 1024 cells and 512 projections. 256 

of the projections are recurrent units and the other 256 

projections are non-recurrent ones. 40 dimensional static 

MFCC feature is extracted for BLSTM training. By 

concatenating the two previous and the two following frames of 

MFCC, we use 40 * 5 = 200 dimension feature to train two 

BLSTM with different random seeds using all of the 1500h data. 

We call the two BLSTM with blstm1 and blstm2. 

2.3.3. TDNN 

 

For TDNN neural acoustic model, we use factored form of 

TDNN [3] to design our own network. The factorized TDNN 

(TDNN-F) is reported to beat common TDNN with deeper 

architecture [3], in order to identify some hyper parameter 

configuration, we first train TDNN-F models with only the 

TED-LIUM data and decode with a relatively small n-gram 

language model. We summarize the intermediate result in table 

1. Here we only report average WER of tst2013, tst2014 and 

tst2014.  

As can be seen from the table, it is beneficial to use i-vector 

or fMLLR transformed feature to train speaker adapted 

networks. Comparing the third row and the forth row, we find 

WER of fMLLR system is 15.09 which is worse than i-vector 

augmented system of 14.23. As we gradually increase the 

number of layers from 16 to 26, a steady performance 

improvement is obtained. TDNNs that is deeper than 26 may 

decrease in performance as the 31 layer net is worse than 26 

layer net. The 200 dimensional i-vector augmented 26 layer 

TDNN reaches a WER of 13.93.  Additional discriminative 

training (DT) also help, it helps to decrease WER from 14.03 to 

13.62. When adding the cleaned 220 hours of data, we lower the 

WER from 14.03 to 13.35. 

 

Table 1: TDNN results on TED-LIUM corpus 

#layer configuration average 

16 40MFCC 15.76 

16 40MFCC + 100ivec 15.53 

21 40MFCC + 100ivec 14.23 

21 40MFCC + fMLLR 15.09 

26 40MFCC + 100ivec 14.03 

26 40MFCC + 200ivec 13.93 

26 40MFCC + 100ivec + DT 13.62 

31 40MFCC + 100ivec 14.3 

26 40MFCC + 100ivec + 220h data 13.35 

 

Conclude from Table 1, our final TDNN use a 26 layers 

TDNN architecture. We abandon fMLLR and use 200 

dimensional i-vector augmented to MFCC to train speaker 

adapted net. Each hidden layer contains 1024 units and 160-

dimension bottleneck. The input to TDNN is 5 frames of 40-

dimension static MFCC. The other TDNN layer has an input 

context equals to 3 which has different time stride. We 

constructed 3 consecutive layers with time stride 1, 4 

consecutive layers with time stride 2 and 15 consecutive layers 

with time stride 3. Each of these consecutive layers with the 

same time stride is followed by a fully connected layer. We train 

two of them with different random seeds with total data, and the 

third TDNN with 80% data. After TDNN training we got tdnn1, 

tdnn2 and tdnn3. 

 

2.4. Language Model 

2.4.1. Data Preparation and the Vocabulary 

For the data preparation, number normalization and 

lowercasing are adopted to formatting the all-corpora. Next, 

punctuations are removed and the paragraphs are split into 

sentences. We choose 152217 English words to build the 

vocabulary and replace all the out-of-vocabulary (OOV) words 

in the corpora with the symbol “<unk>”.  
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2.4.2. N-gram Language Models 

The constrained all-corpora consists of various  text resources, 

such as news, TED subtitles, film subtitles, Europarl dataset and 

some web crawled materials. The Table 2 shows the details of 

the cleaned sub-corpora and their interpolation coefficients in 

n-gram language modeling. We estimate a series of sub-corpora 

5-gram language models using the SRILM toolkit [11] with the 

modified Kneser-Ney smoothing. And then, the development 

datasets are used for the perplexities and the interpolation 

weights tuning. By linearly interpolating the different sub-

corpora 5-gram models, the final back-off language model is 

estimated and adopted to the speech recognition system. The 

perplexities of the development datasets are listed in the Table 

3. 

 

Table 2: English language modelling datasets and interpolation 

coefficients. 

Text corpus # Words Interpolation 

TED  5.747 M 0.131 

OpenSubtitles 144.1 M 0.064 

Para WIT 3.263 M 0.029 

ParaCrawl + Common crawl   765.1 M 0.048 

News discussions 4638 M 0.397 

News articles  4004 M 0.331 

 

Table 3: The perplexities (PPL) of the English dev corpora. 

Dev set 5-gram LM 

tst2013 112.31 

tst2014 143.11 

tst2015 121.80 

 

 

2.4.3. LSTM based Neural Language Model 

To improve the computation efficiency in the neural language 

model, the vocabulary needs to be downsized. We select the top 

30000 frequent words from the cleaned corpora to construct a 

small vocabulary, and replace the out-of-vocabulary words in 

the cleaned corpora with the symbol “<oos>” according to the 
customized vocabulary.  

The LSTM based language model are trained with 

TensorFlow. The model contains two stacked dropout wrapped 

LSTM layers [12] with the hidden size of 256.  The word 

embedding size is 256 and the initial learning rate is 0.1. After 

the training, we apply the LSTM based language model in the 

lattice rescoring and n-best rescoring with the Kaldi toolkit [6]. 

The pruned lattice-rescoring algorithm in [13] helps to achieve 

lower word error rate (WER) in ASR. Both in the lattice 

rescoring and n-best rescoring stages, interpolating the 5-gram 

language model with the LSTM based language model can 

further improve the ASR accuracies. 

2.5. System combination 

In the first pass, we use 6 neural network systems described in 

section 2.3, e.g. dcnn, blstm1, blstm2, tdnn1, tdnn2, tdnn3 and 

5-gram language model described in section 2.4.2. We combine 

the system in the posterior level and generate the first pass 

ensemble results. We also select the best single network system 

tdnn1 to perform discriminative training, but found no 

performance gain when combine with the above 6 systems. The 

decoding lattices of the ensemble system are sent to a second 

pass decoder for lattice rescoring. 

3. Neural Machine Translation 

In this section, some post-processing details of ASR output and 

the architecture of our neural machine translation system are 

described. 

3.1. Punctuation Restoration 

The automatic speech recognition system only generates a 

stream of words without any punctuation symbols. In our work, 

we model the punctuation using the sequence to sequence 

architecture. Our punctuation restoration model is based on the 

Transformer architecture, which is based on attention only. In 

our work, given a sequence of words as our inputs, we label 

each word based on the punctuation after the word. Specifically, 

we label each word with comma, period, question mark, 

exclamation mark and non-punctuation.  

The training dataset contains 41.5M sentences in total. 

Sentences were encoded using byte-pair encoding [15] with 

source vocabulary of about 30k tokens. We evaluate the 

performance of our punctuation restoration model by precision, 

recall and F1 score. We present the results in table. 

 

Table 4: The result of our Punctuation Restoration model 

Dev set Precision Recall F1 value 

tst13 88.01% 82.18% 85.00% 

tst14 88.62% 84.28% 86.40% 

tst15 91.51% 86.26% 88.81% 

average 89.38% 84.24% 86.73% 

3.2. Disfluency Detection and Inverse Text Normalization 

Since the automatic speech recognition outputs often contain 

various disfluencies. In this paper, a simple but efficient 

detection approach is employed to identify and repair these 

disfluencies. At first, we remove the filled pauses, such as “uh” 
and “um”. Then we define a window to identify and remove 
the repetitions in the output of ASR system.  

After disfluency detection, the inverse text normalization is 

necessary for machine translation, because the corpus of 

machine translation are in written form, but the output of the 

automatic speech recognition are generally in spoken form, 

especially in figure, data and the amount of money. As shown 

in Figure 1, the word stream generated by ASR system is 

transformed into the standard form after punctuation restoration, 

disfluency detection and inverse text normalization. 

 

Figure 1: Post-processing for ASR output 

The output of ASR system:  

and the results from the twenty twenty two uh point five 

million sentences we selected sixteen point eight and 

which let us to throw like twenty two percent of the 

corpus 

 

After our post-process:  
and the results from the 22.5 million sentences, we 

selected 16.8 and which let us to throw like 22% of the 

corpus. 
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3.3. Data Preparation and Cleaning for NMT 

The parallel text data consists of four parts: Speech-Translation 

TED corpus, TED corpus (Web Inventory of Transcribed and 

Translated Talks, WIT), WMT2018 and OpenSubtitles2018.  

We tokenize both the English and Germany text data by 

the Moses tokenizer2. Then the English data is transformed to 

lower case. To simplify the post processing of translation, we 

do not transform the German data to lower case. Finally, we use 

BPE subword segmentation tool to process the English data and 

German data. 

We have observed some noise data, which cause a lot of 

translation errors. In order to improve the quality of parallel text 

data, we have cleaned the data. 

 The samples whose number of tokens are over 100 will be 

removed. 

 For one sentence pair, if the length rate of source/target is 

less than 1/2 or large than 2, they will be removed. 

 We use SRILM Toolkit [11] to train an English ngram 

language model and a German ngram language model 

respectively with the parallel text data. The two LMs are 

used to evaluate the perplexity (PPL) for the sentences. For 

one source sentence (English side) and target sentence 

(German), they are removed if they meet the following two 

conditions: (1) we use source LM to calculate PPL. The 

PPL of source sentence is larger than that of target sentence; 

(2) we use target LM to calculate PPL. The PPL of target 

sentence is larger than that of the source sentence.  

3.4. NMT Architecture 

Our model follows the Transformer architecture which is solely 

based on attention mechanisms [4]. In our setup, the encoder 

has six layers. Each layer is consist of two parts: multi-head 

self-attention network and position-wise fully connected feed-

forward network. The two parts employ both residual 

connection and layer-normalization. In the decoder, we employ 

masking to ensure that the prediction for the current word only 

depends on the previous words. 

The dimension of word embedding is set to 512. The 

hidden state size is set to 1024. The vocabulary sizes of English 

and German are set of 60,000. 

The sentences which have the similar number of tokens are 

grouped together. During training, the batches of size is set by 

the number of tokens which is set to 8000. We use the Adam 

optimizer to train the model. 

3.5. Fine-tune  

A large part of the training data comes from WMT, whose 

domain is news. But the test sets come from oral domain. After 

the systems are trained, we continue to train the systems by 

5000 steps with the WIT parallel text data.  

3.6. Ensemble 

It’s common to avoid over-fitting by using ensemble of several 

systems. There are two methods we have adopted. For one 

system training, we always average all of parameters across the 

last 20 checkpoints. For several system trainings, we compute 

                                                           
2 https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl 

the output tokens’ possibilities by averaging the systems’ 
output possibilities.  

In the final system, we choose six systems to apply the second 

ensemble. 

3.7. Re-scoring with NMT Variants 

In order to get better translation result, we test different NMT 

variant models in re-scoring n-best list. 

Target right-to-left NMT Model: When the target words 

are decoded by the NMT system, the later words will depend 

on the previous words decisions in the beam search decoder. 

So the word decision at time step t is much harder than that of 

time step t-1[16]. In order to alleviate this imbalance problem, 

a variant NMT model, which decodes the target words from 

right-to-left (R2L), is trained. The R2L model is used to re-

score the n-best list which produced by the main NMT model. 

The scores represents the conditional probabilities of the 

reversed translations given the source sentences. 

Target-to-source NMT Model: Moreover, the translations 

may be inadequate: the translations may repeat or miss out 

some words [17]. In order to cope with the inadequateness, we 

also test the target-to-source (T2S) model, which is trained with 

the source and target swapped.  

We first produce one n-best list with an ensemble of serval 

models. Then we do force decoding with target right-to-left, 

target-to-source NMT models. We treat each models scores as 

an individual feature. We use k-batched MIRA [18] to tune 

weights for all the features.  In order to get more diverse n-best 

list, we also try to increase the size of beam from 10 to 100 for 

re-scoring. 

4. Results 

4.1. Results for ASR 

Table 5 shows our systems built for the ASR submission. In the 

first pass, we use 6 neural network system described in section 

2.3, e.g. dcnn, blstm1, blstm2, tdnn1, tdnn2, tdnn3 and 5-gram 

language model described in section 2.4.2. We combine the 

system in the posterior level and generate the first pass 

ensemble results. The decoding lattices of the ensemble system 

are sent to a second pass decoder for lattice rescoring. 

 

Table 5: The WER result of our ASR model 

System tst2013 tst2014 tst2015 average 

dcnn 11.15 8.86 7.77 9.26 

blstm1 8.65 7.84 8.02 8.17 

blstm2 8.78 8.07 8.03 8.29 

tdnn1 8.5 7.35 6.24 7.36 

tdnn2 8.52 7.42 6.15 7.36 

tdnn3 8.47 7.55 6.18 7.4 

+ensemble 8.01 7.08 6.54 7.21 

+rescoring 7.49 6.76 5.95 6.73 

 

4.2. Results for NMT 

Table 6 shows the machine translation results on validation 
sets. All the results are cased BLEU evaluate by multi-
bleu.perl script in Moses3 . uur data cleaning techniuue 

3https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl 
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improves the baseline by 0.74 BLEU. Due to the domain 
of training data is not very consistent with that of test data, 
we continue training the system with the WIT parallel text 
data. This fine-tune techniuue get an improvement of 1.43 
BLEU. In order to get more diverse models and better 
ensemble results, we train 6 models independently with 
different random initializations. The ensemble result gives 
an improvement of 0.53 BLEU over best single system. By 
increasing the beam size from 10 to 100 during decoding, 
we achieve another improvement of 0.05 BLEU. We add 
six right-to-left and six target-to-source NMT models as re-
scoring features. It improved the system by 0.85 BLEU. 
The test2013 set is used as development set to tune the 
weights of re-scoring features.  
 

Table 6: The English→Germany NMT results on three 

development sets. Submitted system is the last system.  

system tst2013 tst2014 tst2015 average 

baseline 34.73 29.09 33.02 32.28  

+data cleaning 35.4 30.03 33.62 33.02  

+fine-tune 37.13 31.28 34.93 34.45  

+ensemble 37.79 31.56 35.58 34.98  

+beam(10 → 100) 37.92 31.32 35.86 35.03  

+rescore(6*R2L,6*T2S) 38.90 32.36 36.38 35.88  

 
 

4.3. Results for Speech Translation 

Table 7 shows the final speech translation results on three test 

set. In order to tune the ASR and NMT system individually. 

We first segment the full utterance, and then align the utterance 

into segments with the correct English text segments and 

German translations. The transcript of the best ASR system 

was then passed to disfluency detection, Punctuation 

Restoration and text normalization module. Finally, ASR 

outputs with punctuations were translated into German. The 

average result of three test set for our Speech Translation is 

31.02 BLEU.  

 

Table 7: The English→Germany speech translation results on 

three sets. 

system tst2013 tst2014 tst2015 average 

final system 32.95 28.28 31.82 31.02 

 

5. Conclusions 

This paper describes our pipeline system for the IWSLT 2018 

Speech Translation task from English to German. The whole 

pipeline are consist of the wav utterance segmentation module, 

the ASR system, the punctuation restoration and the NMT 

system. 

As for the ASR system, we adopted an ensemble system of 

Deep-CNN, BLSTM, TDNN, n-gram Language model with 

lattice rescoring. According to our experiments, TDNN 

achieved the lowest WER among these three acoustic modeling 

network for this task. For our tdnn acoustic modeling, we found 

adding layers, i-vector, cleaned data are effective. We have 

achieved average WER of 6.73 over three test sets using the 

combination system.  For the NMT system, we also use an 

ensemble of Transformer system with n-best rescoring. And we 

use various techniques in our system, such as data cleaning, 

fine-tune, ensemble of models and n-best rescoring. These 

techniques help our system achieve 3.6 BLEU better than 

baseline. We use the outputs of the best ASR system as input 

of our NMT system, and we achieved average BLEU score of 

31.02 over three development sets.  

How to use document-level information to improve the 

ASR and NMT system performance and build a robust NMT 

system will be our future work. 
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