
The Sogou-TIIC Speech Translation System for IWSLT 2018

Yuguang Wang*, Liangliang Shi*, Linyu Wei*, Weifeng Zhu*, Jinkun Chen*

Zhichao Wang*, Shixue Wen*, Wei Chen*, Yanfeng Wang*, Jia Jia†

*Voice Interaction Technology Center, Sogou Inc., Beijing, China
{wangyuguang,shiliangliang}@sogou-inc.com

†Tiangong Institute for Intelligent Computing, Tsinghua University, Beijing, China
{jjia}@tsinghua.edu.cn

Abstract

This paper describes our speech translation system for the

IWSLT 2018 Speech Translation of lectures and TED talks

from English to German task. The pipeline approach is

employed in our work, which mainly includes the Automatic

Speech Recognition (ASR) system, a post-processing module,

and the Neural Machine Translation (NMT) system. Our ASR

system is an ensemble system of Deep-CNN, BLSTM, TDNN,

N-gram Language model with lattice rescoring. We report

average results on tst2013, tst2014, tst2015. Our best

combination system has an average WER of 6.73. The machine

translation system is based on Google’s Transformer

architecture. We achieved an improvement of 3.6 BLEU over

baseline system by applying several techniques, such as

cleaning parallel corpus, fine tuning of single model, ensemble

models and re-scoring with additional features. Our final

average result on speech translation is 31.02 BLEU.

1. Introduction

We have participated in the Speech Translation of lectures and

TED talks from English to German task. The goal of this task

is to translate fully un-segmented talks or lectures from English

to German.

A pipeline approach is employed in our work. It consists of

segmentation of audio data, ASR system, punctuation

restoration and NMT system. A two pass decoding is used in

the ASR system. In the first pass, we use several different neural

network, such as Deep-CNN [1] [2], BLSTM and TDNN [3] to

generate ensemble results. Then the decoding lattices of the

ensemble system are sent to a second pass decoder for lattice

rescoring. In order to bridge the gap between the output of ASR

system and training data of NMT system, punctuation

restoration, disfluency detection and inverse text normalization

are necessary in our pipeline. Our NMT system is based on the

Transformer architecture [4], which is based solely on attention

mechanisms. Several techniques are adopted to improve our

system, such as parallel corpus cleaning, fine tuning, model

ensembling and re-scoring with additional features.

The rest of this paper is structured as follows. Section 2

describes the details of our ASR system, and Section 3 describes

our NMT system. Our results in the speech translation task are

presented in Section 4. We conclude this paper in Section 5.

1https://github.com/kaldi-

asr/kaldi/blob/master/egs/ami/s5b/local/run_cleanup _segmentation.sh

2. Automatic speech recognition

2.1. Audio Segmentation

In this evaluation, the test set is provided without manual

sentence segmentation, thus automatic segmentation of the final

test set is essential. We utilize an approach to automatic

segment audio data based on the signal energy. We set a

threshold to split the audio between 8 and 15 seconds and then

concatenate utterances that are shorter than 8 seconds to its

neighboring utterances.

2.2. Audio Data Preparation and Feature Extraction

2.2.1. Data Cleaning

Our acoustic data comes from two sources. The first is the TED-

LIUM [5], which contains 340 hours of well transcribed data.

The second part comes from Speech-Translation TED corpus,

which is about 270 hours of data with some bad segments, e.g.

music or transcriptions not comparing the wav files. We follow

the way in kaldi toolkit [6] to do the cleaning1. This aimed to

cut the bad part off and only retrain the segments that can be

compared with the transcripts. And we got about 220 hours in

this part.

2.2.2. Dereverbration

For speech dereverbration, we calculate the RT60 [7] of the

speech firstly. The speech whose RT60 is longer than 400ms is

filtered with the Kalman filtering algorithm [8] to dereverberate

the speech. Thus we get about 11,000 kalman filtered utterances

and add them to the original data.

2.2.3. Speed Perturbation

Speed perturbation is done with 1.1 and 0.9 times for all the data

above. Finally we obtain about total 1700 hours acoustic data to

get robust performance in the end.

2.2.4. Feature Extraction

Our acoustic feature engineering is not complicated. The system

is built using several different features including 39-

dimensional MFCC for GMM, 40-dimensional static MFCC

and 80-dimensional filter banks for neural networks. These

features can be augmented with i-vectors to train speaker

112

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018

adapted networks. The dimension of i-vectors is chosen to be

200 which is extracted from every 50 frames. I-vectors and

features are combined in the input layer for TDNNs and

BLSTMs. While for CNN, input layer only contains filter bank

and i-vectors are combined with the fully-connected layer

before the output. We also extracted fMLLR transformed

feature on 340hr TED-LIUM data and found fMLLR features

contribute no significant improvement compared to i-vector

augmented system. So we only use i-vector to train our final

speaker adapted systems.

2.3. Acoustic Modeling

We use DNN-HMM hybrid acoustic model for all our ASR

experiments. All NN systems were trained using Lattice-free

MMI (LF-MMI) [9] loss function with low frame rate (LFR)

equals to 3 to predict context dependent phones (bi-phone). We

mainly used three different types of neural net architecture,

including deep convolutional neural network (DCNN),

bidirectional LSTM (BLSTM) and time delayed deep neural

network (TDNN). In GMM-HMM part, we use 13-dimension

mel frequency cepstral coefficient (MFCC) with first and

second derivatives with 500 hours data without speed

perturbation. The dictionary provided in the TED-LIUM dataset

is used for our GMM training. The final GMM has totally

150,193 Gaussian mixtures, correspond to 4056 states. This

500hr GMM-HMM was used to align all the 1500h data to

generate state alignments for clustering bi-phone labels used in

LF-MMI training. After clustering we finally get 3144 bi-

phones which equal the output nodes number of all our neural

networks.

2.3.1. Deep CNN

We were inspired by the VGG net [10] and the deep CNN

architecture used in [1] [2] to design our CNN model. We train

our DCNN model with 80 dimension filter bank feature without

first and second derivatives. We use batch normalization (BN)

and ReLU nonlinear activations following each convolution

layer. We stack 31 layer of such conv-BN-ReLU block with

residual connections around every two of them. Most of the two

dimensional time-frequency convolution kernels are all set to 3

x 3 with stride 1x1. We set kernel size to 5 x 5 with stride 2 x 1

in the 6th, 12th, 24th, 30th convolution layer to reduce the

frequency dimension from 80 to 5. Every time we reduce the

frequency dimension we double our kernel number. So as we

go deeper, the kernel number is set to 32, 64, 128, 256, and 384.

We train such DCNN with all the 1500h data to obtain system

dcnn.

2.3.2. BLSTM

Our BLSTM model consists of 5 layers that has two

unidirectional LSTM with 1024 cells and 512 projections. 256

of the projections are recurrent units and the other 256

projections are non-recurrent ones. 40 dimensional static

MFCC feature is extracted for BLSTM training. By

concatenating the two previous and the two following frames of

MFCC, we use 40 * 5 = 200 dimension feature to train two

BLSTM with different random seeds using all of the 1500h data.

We call the two BLSTM with blstm1 and blstm2.

2.3.3. TDNN

For TDNN neural acoustic model, we use factored form of

TDNN [3] to design our own network. The factorized TDNN

(TDNN-F) is reported to beat common TDNN with deeper

architecture [3], in order to identify some hyper parameter

configuration, we first train TDNN-F models with only the

TED-LIUM data and decode with a relatively small n-gram

language model. We summarize the intermediate result in table

1. Here we only report average WER of tst2013, tst2014 and

tst2014.

As can be seen from the table, it is beneficial to use i-vector

or fMLLR transformed feature to train speaker adapted

networks. Comparing the third row and the forth row, we find

WER of fMLLR system is 15.09 which is worse than i-vector

augmented system of 14.23. As we gradually increase the

number of layers from 16 to 26, a steady performance

improvement is obtained. TDNNs that is deeper than 26 may

decrease in performance as the 31 layer net is worse than 26

layer net. The 200 dimensional i-vector augmented 26 layer

TDNN reaches a WER of 13.93. Additional discriminative

training (DT) also help, it helps to decrease WER from 14.03 to

13.62. When adding the cleaned 220 hours of data, we lower the

WER from 14.03 to 13.35.

Table 1: TDNN results on TED-LIUM corpus

#layer configuration average

16 40MFCC 15.76

16 40MFCC + 100ivec 15.53

21 40MFCC + 100ivec 14.23

21 40MFCC + fMLLR 15.09

26 40MFCC + 100ivec 14.03

26 40MFCC + 200ivec 13.93

26 40MFCC + 100ivec + DT 13.62

31 40MFCC + 100ivec 14.3

26 40MFCC + 100ivec + 220h data 13.35

Conclude from Table 1, our final TDNN use a 26 layers

TDNN architecture. We abandon fMLLR and use 200

dimensional i-vector augmented to MFCC to train speaker

adapted net. Each hidden layer contains 1024 units and 160-

dimension bottleneck. The input to TDNN is 5 frames of 40-

dimension static MFCC. The other TDNN layer has an input

context equals to 3 which has different time stride. We

constructed 3 consecutive layers with time stride 1, 4

consecutive layers with time stride 2 and 15 consecutive layers

with time stride 3. Each of these consecutive layers with the

same time stride is followed by a fully connected layer. We train

two of them with different random seeds with total data, and the

third TDNN with 80% data. After TDNN training we got tdnn1,

tdnn2 and tdnn3.

2.4. Language Model

2.4.1. Data Preparation and the Vocabulary

For the data preparation, number normalization and

lowercasing are adopted to formatting the all-corpora. Next,

punctuations are removed and the paragraphs are split into

sentences. We choose 152217 English words to build the

vocabulary and replace all the out-of-vocabulary (OOV) words

in the corpora with the symbol “<unk>”.

113

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018

2.4.2. N-gram Language Models

The constrained all-corpora consists of various text resources,

such as news, TED subtitles, film subtitles, Europarl dataset and

some web crawled materials. The Table 2 shows the details of

the cleaned sub-corpora and their interpolation coefficients in

n-gram language modeling. We estimate a series of sub-corpora

5-gram language models using the SRILM toolkit [11] with the

modified Kneser-Ney smoothing. And then, the development

datasets are used for the perplexities and the interpolation

weights tuning. By linearly interpolating the different sub-

corpora 5-gram models, the final back-off language model is

estimated and adopted to the speech recognition system. The

perplexities of the development datasets are listed in the Table

3.

Table 2: English language modelling datasets and interpolation

coefficients.

Text corpus # Words Interpolation

TED 5.747 M 0.131

OpenSubtitles 144.1 M 0.064

Para WIT 3.263 M 0.029

ParaCrawl + Common crawl 765.1 M 0.048

News discussions 4638 M 0.397

News articles 4004 M 0.331

Table 3: The perplexities (PPL) of the English dev corpora.

Dev set 5-gram LM

tst2013 112.31

tst2014 143.11

tst2015 121.80

2.4.3. LSTM based Neural Language Model

To improve the computation efficiency in the neural language

model, the vocabulary needs to be downsized. We select the top

30000 frequent words from the cleaned corpora to construct a

small vocabulary, and replace the out-of-vocabulary words in

the cleaned corpora with the symbol “<oos>” according to the
customized vocabulary.

The LSTM based language model are trained with

TensorFlow. The model contains two stacked dropout wrapped

LSTM layers [12] with the hidden size of 256. The word

embedding size is 256 and the initial learning rate is 0.1. After

the training, we apply the LSTM based language model in the

lattice rescoring and n-best rescoring with the Kaldi toolkit [6].

The pruned lattice-rescoring algorithm in [13] helps to achieve

lower word error rate (WER) in ASR. Both in the lattice

rescoring and n-best rescoring stages, interpolating the 5-gram

language model with the LSTM based language model can

further improve the ASR accuracies.

2.5. System combination

In the first pass, we use 6 neural network systems described in

section 2.3, e.g. dcnn, blstm1, blstm2, tdnn1, tdnn2, tdnn3 and

5-gram language model described in section 2.4.2. We combine

the system in the posterior level and generate the first pass

ensemble results. We also select the best single network system

tdnn1 to perform discriminative training, but found no

performance gain when combine with the above 6 systems. The

decoding lattices of the ensemble system are sent to a second

pass decoder for lattice rescoring.

3. Neural Machine Translation

In this section, some post-processing details of ASR output and

the architecture of our neural machine translation system are

described.

3.1. Punctuation Restoration

The automatic speech recognition system only generates a

stream of words without any punctuation symbols. In our work,

we model the punctuation using the sequence to sequence

architecture. Our punctuation restoration model is based on the

Transformer architecture, which is based on attention only. In

our work, given a sequence of words as our inputs, we label

each word based on the punctuation after the word. Specifically,

we label each word with comma, period, question mark,

exclamation mark and non-punctuation.

The training dataset contains 41.5M sentences in total.

Sentences were encoded using byte-pair encoding [15] with

source vocabulary of about 30k tokens. We evaluate the

performance of our punctuation restoration model by precision,

recall and F1 score. We present the results in table.

Table 4: The result of our Punctuation Restoration model

Dev set Precision Recall F1 value

tst13 88.01% 82.18% 85.00%

tst14 88.62% 84.28% 86.40%

tst15 91.51% 86.26% 88.81%

average 89.38% 84.24% 86.73%

3.2. Disfluency Detection and Inverse Text Normalization

Since the automatic speech recognition outputs often contain

various disfluencies. In this paper, a simple but efficient

detection approach is employed to identify and repair these

disfluencies. At first, we remove the filled pauses, such as “uh”
and “um”. Then we define a window to identify and remove
the repetitions in the output of ASR system.

After disfluency detection, the inverse text normalization is

necessary for machine translation, because the corpus of

machine translation are in written form, but the output of the

automatic speech recognition are generally in spoken form,

especially in figure, data and the amount of money. As shown

in Figure 1, the word stream generated by ASR system is

transformed into the standard form after punctuation restoration,

disfluency detection and inverse text normalization.

Figure 1: Post-processing for ASR output

The output of ASR system:

and the results from the twenty twenty two uh point five

million sentences we selected sixteen point eight and

which let us to throw like twenty two percent of the

corpus

After our post-process:
and the results from the 22.5 million sentences, we

selected 16.8 and which let us to throw like 22% of the

corpus.

114

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018

3.3. Data Preparation and Cleaning for NMT

The parallel text data consists of four parts: Speech-Translation

TED corpus, TED corpus (Web Inventory of Transcribed and

Translated Talks, WIT), WMT2018 and OpenSubtitles2018.

We tokenize both the English and Germany text data by

the Moses tokenizer2. Then the English data is transformed to

lower case. To simplify the post processing of translation, we

do not transform the German data to lower case. Finally, we use

BPE subword segmentation tool to process the English data and

German data.

We have observed some noise data, which cause a lot of

translation errors. In order to improve the quality of parallel text

data, we have cleaned the data.

 The samples whose number of tokens are over 100 will be

removed.

 For one sentence pair, if the length rate of source/target is

less than 1/2 or large than 2, they will be removed.

 We use SRILM Toolkit [11] to train an English ngram

language model and a German ngram language model

respectively with the parallel text data. The two LMs are

used to evaluate the perplexity (PPL) for the sentences. For

one source sentence (English side) and target sentence

(German), they are removed if they meet the following two

conditions: (1) we use source LM to calculate PPL. The

PPL of source sentence is larger than that of target sentence;

(2) we use target LM to calculate PPL. The PPL of target

sentence is larger than that of the source sentence.

3.4. NMT Architecture

Our model follows the Transformer architecture which is solely

based on attention mechanisms [4]. In our setup, the encoder

has six layers. Each layer is consist of two parts: multi-head

self-attention network and position-wise fully connected feed-

forward network. The two parts employ both residual

connection and layer-normalization. In the decoder, we employ

masking to ensure that the prediction for the current word only

depends on the previous words.

The dimension of word embedding is set to 512. The

hidden state size is set to 1024. The vocabulary sizes of English

and German are set of 60,000.

The sentences which have the similar number of tokens are

grouped together. During training, the batches of size is set by

the number of tokens which is set to 8000. We use the Adam

optimizer to train the model.

3.5. Fine-tune

A large part of the training data comes from WMT, whose

domain is news. But the test sets come from oral domain. After

the systems are trained, we continue to train the systems by

5000 steps with the WIT parallel text data.

3.6. Ensemble

It’s common to avoid over-fitting by using ensemble of several

systems. There are two methods we have adopted. For one

system training, we always average all of parameters across the

last 20 checkpoints. For several system trainings, we compute

2 https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

the output tokens’ possibilities by averaging the systems’
output possibilities.

In the final system, we choose six systems to apply the second

ensemble.

3.7. Re-scoring with NMT Variants

In order to get better translation result, we test different NMT

variant models in re-scoring n-best list.

Target right-to-left NMT Model: When the target words

are decoded by the NMT system, the later words will depend

on the previous words decisions in the beam search decoder.

So the word decision at time step t is much harder than that of

time step t-1[16]. In order to alleviate this imbalance problem,

a variant NMT model, which decodes the target words from

right-to-left (R2L), is trained. The R2L model is used to re-

score the n-best list which produced by the main NMT model.

The scores represents the conditional probabilities of the

reversed translations given the source sentences.

Target-to-source NMT Model: Moreover, the translations

may be inadequate: the translations may repeat or miss out

some words [17]. In order to cope with the inadequateness, we

also test the target-to-source (T2S) model, which is trained with

the source and target swapped.

We first produce one n-best list with an ensemble of serval

models. Then we do force decoding with target right-to-left,

target-to-source NMT models. We treat each models scores as

an individual feature. We use k-batched MIRA [18] to tune

weights for all the features. In order to get more diverse n-best

list, we also try to increase the size of beam from 10 to 100 for

re-scoring.

4. Results

4.1. Results for ASR

Table 5 shows our systems built for the ASR submission. In the

first pass, we use 6 neural network system described in section

2.3, e.g. dcnn, blstm1, blstm2, tdnn1, tdnn2, tdnn3 and 5-gram

language model described in section 2.4.2. We combine the

system in the posterior level and generate the first pass

ensemble results. The decoding lattices of the ensemble system

are sent to a second pass decoder for lattice rescoring.

Table 5: The WER result of our ASR model

System tst2013 tst2014 tst2015 average

dcnn 11.15 8.86 7.77 9.26

blstm1 8.65 7.84 8.02 8.17

blstm2 8.78 8.07 8.03 8.29

tdnn1 8.5 7.35 6.24 7.36

tdnn2 8.52 7.42 6.15 7.36

tdnn3 8.47 7.55 6.18 7.4

+ensemble 8.01 7.08 6.54 7.21

+rescoring 7.49 6.76 5.95 6.73

4.2. Results for NMT

Table 6 shows the machine translation results on validation
sets. All the results are cased BLEU evaluate by multi-
bleu.perl script in Moses3 . uur data cleaning techniuue

3https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

115

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018

improves the baseline by 0.74 BLEU. Due to the domain
of training data is not very consistent with that of test data,
we continue training the system with the WIT parallel text
data. This fine-tune techniuue get an improvement of 1.43
BLEU. In order to get more diverse models and better
ensemble results, we train 6 models independently with
different random initializations. The ensemble result gives
an improvement of 0.53 BLEU over best single system. By
increasing the beam size from 10 to 100 during decoding,
we achieve another improvement of 0.05 BLEU. We add
six right-to-left and six target-to-source NMT models as re-
scoring features. It improved the system by 0.85 BLEU.
The test2013 set is used as development set to tune the
weights of re-scoring features.

Table 6: The English→Germany NMT results on three

development sets. Submitted system is the last system.

system tst2013 tst2014 tst2015 average

baseline 34.73 29.09 33.02 32.28

+data cleaning 35.4 30.03 33.62 33.02

+fine-tune 37.13 31.28 34.93 34.45

+ensemble 37.79 31.56 35.58 34.98

+beam(10 → 100) 37.92 31.32 35.86 35.03

+rescore(6*R2L,6*T2S) 38.90 32.36 36.38 35.88

4.3. Results for Speech Translation

Table 7 shows the final speech translation results on three test

set. In order to tune the ASR and NMT system individually.

We first segment the full utterance, and then align the utterance

into segments with the correct English text segments and

German translations. The transcript of the best ASR system

was then passed to disfluency detection, Punctuation

Restoration and text normalization module. Finally, ASR

outputs with punctuations were translated into German. The

average result of three test set for our Speech Translation is

31.02 BLEU.

Table 7: The English→Germany speech translation results on

three sets.

system tst2013 tst2014 tst2015 average

final system 32.95 28.28 31.82 31.02

5. Conclusions

This paper describes our pipeline system for the IWSLT 2018

Speech Translation task from English to German. The whole

pipeline are consist of the wav utterance segmentation module,

the ASR system, the punctuation restoration and the NMT

system.

As for the ASR system, we adopted an ensemble system of

Deep-CNN, BLSTM, TDNN, n-gram Language model with

lattice rescoring. According to our experiments, TDNN

achieved the lowest WER among these three acoustic modeling

network for this task. For our tdnn acoustic modeling, we found

adding layers, i-vector, cleaned data are effective. We have

achieved average WER of 6.73 over three test sets using the

combination system. For the NMT system, we also use an

ensemble of Transformer system with n-best rescoring. And we

use various techniques in our system, such as data cleaning,

fine-tune, ensemble of models and n-best rescoring. These

techniques help our system achieve 3.6 BLEU better than

baseline. We use the outputs of the best ASR system as input

of our NMT system, and we achieved average BLEU score of

31.02 over three development sets.

How to use document-level information to improve the

ASR and NMT system performance and build a robust NMT

system will be our future work.

6. References

[1] Zhang Y, Pezeshki M, Brakel P, et al. Towards end-to-

end speech recognition with deep convolutional neural

networks[J]. arXiv preprint arXiv:1701.02720, 2017.
[2] Qian, Yanmin, and Philip C. Woodland. "Very deep

convolutional neural networks for robust speech

recognition." Spoken Language Technology Workshop

(SLT), 2016 IEEE. IEEE, 2016.

[3] Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H.,

Yarmohamadi, M., & Khudanpur, S. (2018). Semi-

orthogonal low-rank matrix factorization for deep neural

networks. INTERSPEECH 2018.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. CoRR,

2017.

[5] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the
TED-LIUM Corpus with Selected Data for Language

Modeling and More TED Talks”, in Proceedings of the
Ninth International Conference on Language Resources

and Evaluation (LREC’14), May 2014.
[6] Povey, D., Ghoshal, A., Boulianne, G., Burget, L.,

Glembek, O., Goel, N., ... & Silovsky, J. (2011). The Kaldi

speech recognition toolkit. In IEEE 2011 workshop on

automatic speech recognition and understanding (No.

EPFL-CONF-192584). IEEE Signal Processing Society.

[7] Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., &

Juang, B. H. (2008, March). Blind speech dereverberation

with multi-channel linear prediction based on short time

Fourier transform representation. In Acoustics, Speech

and Signal Processing, 2008. ICASSP 2008. IEEE

International Conference on (pp. 85-88). IEEE.

[8] Schwartz, B., Gannot, S., & Habets, E. A. (2015). Online

speech dereverberation using Kalman filter and EM

algorithm. IEEE/ACM Transactions on Audio, Speech and

Language Processing (TASLP), 23(2), 394-406.

[9] Povey, D., Peddinti, V., Galvez, D., Ghahremani, P.,

Manohar, V., Na, X., & Khudanpur, S. (2016, September).

Purely Sequence-Trained Neural Networks for ASR Based

on Lattice-Free MMI. In Interspeech (pp. 2751-2755).

[10] Simonyan K, Zisserman A. Very deep convolutional

networks for large-scale image recognition[J]. arXiv

preprint arXiv:1409.1556, 2014.

[11] A. Stolcke, “SRILM-an extensible language modeling

toolkit,” in Proceedings of Interspeech, September 2002,
pp. 901–904.

[12] Y. Gal, and G. Zoubin, "A theoretically grounded

application of dropout in recurrent neural networks,"

in Advances in neural information processing systems,

pp. 1019-1027. 2016.

[13] H. Xu, T. Chen, D. Gao, Y. Wang, K. Li, N. Goel, Y.

Carmiel, D. Povey and S. Khudanpur, “A Pruned

116

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018

RNNLM Lattice-Rescoring Algorithm for Automatic

Speech Recognition,” in Acoustics, Speech and Signal

Processing (ICASSP), 2017 IEEE International

Conference on. IEEE, 2017.

[14] E. Cho, J. Niehues, and A. Waibel, “NMT-based

segmentation and punctuation insertion for real-

time spoken language translation,” Proc.
Interspeech 2017, pp. 2645–2649, 2017.

[15] Rico Sennrich, Barry Haddow, and Alexandra Birch.

2016b. Neural machine translation of rare words with

subword units. In Proceedings of ACL 2016.

[16] Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro

Sumita. 2016. Agreement on Target-bidirectional Neural

Machine Translation. In NAACL HLT 16, San Diego, CA.

[17] Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and

Hang Li. 2016a. Neural machine translation with

reconstruction. arXiv URL:

https://arxiv.org/abs/1611.01874.

[18] Colin Cherry and Gorge Foster. 2012. Batch Tuning

Strategies for Statistical Machine Translation, In NAACL,

2012.

117

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018

