
Linguistic Issues in Language Technology – LiLT
Submitted, October 2015

Abstract Representations of Plot

Structure

Micha Elsner

Published by CSLI Publications

LiLT volume 12, issue 5 October 2015

Abstract Representations of Plot Structure

Micha Elsner, Department of Linguistics, The Ohio State
University, melsner@ling.ohio-state.edu

Abstract

Since the 18th century, the novel has been one of the defining forms
of English writing, a mainstay of popular entertainment and academic
criticism. Despite its importance, however, there are few computational
studies of the large-scale structure of novels—and many popular repre-
sentations for discourse modeling do not work very well for novelistic
texts. This paper describes a high-level representation of plot structure
which tracks the frequency of mentions of different characters, topics
and emotional words over time. The representation can distinguish with
high accuracy between real novels and artificially permuted surrogates;
characters are important for eliminating random permutations, while
topics are effective at distinguishing beginnings from ends.

1

LiLT Volume 12, Issue 5, October 2015.
Abstract Representations of Plot Structure.
Copyright c© 2015, CSLI Publications.

2 / LiLT volume 12, issue 5 October 2015

1 Introduction

The novel, one of the characteristic forms of modern English literature,
poses several interesting challenges from the point of view of computa-
tional analysis. Some of these have to do with the sheer size of a novel.
Unlike a newspaper or encyclopedia article, novels routinely stretch to
tens or hundreds of thousands of words, covering complex sequences
of interlocking characters and events. Other challenges are representa-
tional. It is clear that not all descriptions of sequences of events make
for acceptable novelistic plots, but literary theorists have taken a vari-
ety of perspectives on what the defining characteristics of plot structure
actually are.

This paper attempts to represent “plot structure” at a high level,
abstracting away from any particular events. The aim is to capture
basic concepts such as “protagonist” or “happy ending” in ways that
apply across a broad range of texts. Whenever possible, the representa-
tion is constructed using lexical distribution rather than requiring text
analyses (possibly error-prone) with complex NLP tools. This repre-
sentation is used to create models capable of distinguishing real novels
from artificially disordered texts for which plot structure is missing or
incomprehensible.

This approach is motivated by the inadequate performance of current
general-purpose NLP systems on novelistic text. For instance, general-
purpose extractive summarizers fail to find suitable sentences (Kazant-
seva and Szpakowicz, 2010). The output of Microsoft Word 2008’s built-
in summarizer on Pride and Prejudice is shown in Figure 1.

“Bingley.” Elizabeth felt Jane’s pleasure. “Miss Elizabeth Bennet.” Eliz-
abeth looked surprised. “FITZWILLIAM DARCY” Elizabeth was de-
lighted. Elizabeth read on: Elizabeth smiled. “If! “Dearest Jane!

FIGURE 1 Output the built-in summarizer in Microsoft Word 2008, run on
the full text of Pride and Prejudice; quoted by Huff (2010).

Part of the problem is that counting unigrams at the document level
identifies character names, rather than themes or plot elements, as the
most important content of Pride and Prejudice. Another issue is the
extractive assumption. Not only has this summary selected the wrong
sentences, but the novel may not contain a good set of “topic sentences”
to begin with. Thus, rather than asking whether it is possible to sum-
marize Pride and Prejudice by drawing specific sentences from within
the text that say “what the story is about”, summarizers may be better

Abstract Representations of Plot Structure / 3

off representing its structure in terms of similarities to other works. For
instance, one can say Pride and Prejudice is a romance. This ties it
to a variety of other books (including Jane Austen’s other works) and
sets up some basic expectations in the mind of a potential reader: the
story will focus on a protagonist (probably female) who falls in love
and eventually gets married. The goal of this paper is to construct an
automatic function for measuring similarity between novels, as progress
toward eventual summarization, search and recommendation systems.

While this study focuses on public-domain works from the 19th
and early 20th centuries, these representational strategies will hope-
fully continue to be useful on modern texts from the Western nov-
elistic tradition. Modern writers continue to produce vast amounts of
fictional text. That includes amateur authors whose output is never for-
mally published or curated; in 2010, over 200,000 people participated in
NaNoWriMo (national novel writing month). A system able to provide
summaries or other representations of these texts could aid in making
them more accessible to prospective readers as well as to academics
such as sociolinguists or narratologists.

The system represents a novel as a set of trajectories which describe
the frequencies of various kinds of language over time. Two novels are
defined as similar if their trajectories for various features tend to look
alike. Several options are available for constructing such trajectories.
Either the entire novel can have a single representation, or there can be
features for the language associated with individual characters within
it. And there are multiple possibilities for linguistic features to track.
This paper describes representations based on sentiment words, the fre-
quencies of mentions of the characters themselves, and word clusters
created by Latent Dirichlet Allocation (henceforth, LDA; Blei et al.,
2001). LDA groups related words, such as “song” and “melody”, be-
cause they frequently occur together in the same works.

Some literary scholars claim that sentiment is central to the high-
level construction of plots. Crane (2002) writes that effective plots cause
us to “wish good [for some of the characters], for others ill, and depend-
ing on our inferences as to the events, we feel hope or fear... or similar
emotions”. Phelan and Rabinowitz (2012) extend this approach to a
rhetorical theory of narrative which analyzes stories by examining the
kinds of emotional and moral judgements which the author intends to
elicit from the audience. On the other hand, LDA induces word clus-
ters directly from the corpus and can therefore learn features which a
general-purpose lexicon could not. The experiments discussed in this
paper evaluate the strengths and weaknesses of each approach.

These representational choices are evaluated through the construc-

4 / LiLT volume 12, issue 5 October 2015

tion of a similarity function, or kernel, which measures how alike two
novels are in a given feature representation. Representation quality can
then be compared by drawing on an existing tradition of discourse co-
herence evaluation using artificial reordering experiments (Karamanis
et al., 2004). In these experiments, the kernel is used to distinguish nov-
els that have been randomly permuted, or reversed, chapter-by-chapter,
from the originals.

The proposed representation and experimental setup implicitly
assume that novels share a common sequential structure—an emo-
tional/rhetorical structure for systems using sentiment features or a
chronological sequence for LDA. Deviations from these structural prin-
ciples are a common way to create suspense or draw attention to the
narrative as an artifact. In a 19th-century example, the long flashback
in The Tenant of Wildfell Hall breaks the chronological sequence to
reveal the details of a character’s mysterious past. Post-modern novels
often involve even more complex structures, such as intertwined or
nested narratives (for instance, David Foster Wallace’s Infinite Jest or
Milorad Pavić’s Dictionary of the Khazars). Computational linguists
have devoted some effort to representing such texts (Ryan, 1991) and
disentangling their narrative threads (Wallace, 2012). The representa-
tion proposed here is unlikely to work well with texts which violate its
core assumption of a sequential structure, but might still be helpful in
representing single threads extracted by such a technique.

The experimental results indicate that character-based systems and
single-trajectory systems which represent the whole novel at once have
complementary strengths. Character frequency is most effective for dis-
tinguishing randomly permuted novels from originals, while a single
trajectory of LDA features is most effective for reversals. This implies
that tracking the course of events (as in many previous models) is in-
deed important in making sure the plot sequence points in the correct
direction, from beginning to end. For instance, the rise in suspense or
exciting sentiment at the end of a mystery or adventure story is a prop-
erty of the story as a whole, not an emotion felt only by the protagonist.
It is also important, however, to track the kinds of characters who ap-
pear in a work, and so help distinguish a coherent plot structure from
a randomized one; minor characters’ marriage occurs throughout Jane
Austen’s novels, but the protagonist only gets married at the end.

This paper builds on previous work (Elsner, 2012), which proposed
the initial building blocks of the representation used here, but expands
on it in several ways. First, this work tracks a wider range of lexical
features, using a more sophisticated sentiment lexicon as well as LDA
topics. Second, when comparing characters from one novel to charac-

Abstract Representations of Plot Structure / 5

ters from another, creating an explicit one-to-one map of correspond-
ing characters (symmetrization) improves upon the previous technique
of comparing all pairs. The results, especially the use of symmetriza-
tion, are substantially better than those reported in (Elsner, 2012);
the best (one-neighbor) classification of randomly permuted novels in-
creases from 62% to 82% and of reversals from 52% to 89%. Further
comparisons are given in subsection 6.2.

2 Related work

2.1 High-level representations

Previous attempts to represent plot structure automatically have
largely focused on understanding stories sentence-by-sentence. A few
have attempted to construct high-level representations as in this paper;
many of these have settled on characters as an important representa-
tional primitive.

The work by Coll Ardanuy and Sporleder (2014) is the closest to
what is presented here. They too use both static and time-varying char-
acter similarity features to represent texts as graphs with characters as
nodes. They use these graphs to define a text similarity metric, and clus-
ter texts by author and genre. Unlike this work, however, they gather
features over the network as a whole (for instance, the proportion of
male characters) rather than trying to define text similarity by build-
ing up from character similarities. Thus, the feature sets considered in
their work are quite different from those used here.

Elson et al. (2010) also build social networks for characters in novels,
which they use to evaluate several questions in literary theory. As in this
work, they begin by identifying characters using coreference resolution
on mentions. They construct the social network based on conversation
structure (O’Keefe et al., 2012, Elson et al., 2010); the experiments
here use the simpler, but less precise, heuristic of co-frequency counts.
Their work, however, does not use time-varying features, but collapses
the novel over time, producing a static picture of a dynamic system.

Bamman et al. (2014) use a mixed-effects model to infer latent char-
acter types from the text of a large set of novels. Like Elson et al. (2010),
they have a feature set that is not time-varying. They build upon previ-
ous work by Bamman et al. (2013) who use a Bayesian model to learn a
set of character roles such as protagonist, love interest and best
friend for movie characters, but using metadata rather than scripts
directly. They evaluate against a set of preregistered hypotheses.

Alm and Sproat (2005), on the other hand, produce an explicitly
temporal structure, a time-varying curve of emotional language over

6 / LiLT volume 12, issue 5 October 2015

time, which they call an emotional trajectory. Alm and Sproat (2005)
rely on hand-annotation of the trajectory. They produce a single tra-
jectory per story (or several stories). Subsequent work on sentiment
analysis of fiction and literary texts has retained the single-trajectory
assumption, while focusing on enriching the set of sentiments used by
the system and improving techniques for detecting them. Volkova et al.
(2010), for instance, describe a protocol for hand-annotation of senti-
ment in fairy tales which allows non-experts to achieve high agreement.

Mohammad and Turney (2010) construct a large emotional lexicon
using Mechanical Turk crowd-sourcing, which is used in the systems
presented here. In Mohammad (2011, 2012), it is used to construct
emotional trajectories for a few literary works such as Hamlet, but,
apart from a broad corpus-level comparison between novels and fairy
tales, no effort is made to evaluate these systematically. Ang (2012) cre-
ates trajectory plots using Mohammad and Turney’s (2010) emotional
categories, and evaluates them as part of a toolkit for writers. In a sur-
vey, writers find the tool interesting, although they point out that its
inferred sentiments can be inaccurate due to negation and other effects
of context.1 This paper evaluates both traditional trajectory systems
which produce a single trajectory per work, and multiple trajectories,
one per character. It finds that both can be effective at capturing dif-
ferent aspects of plot structure.

An alternative to tracking sentiment distributions is tracking topics—
words which occur together in context. LDA (Blei et al., 2001), the
now-standard topic model, has been used in a variety of analyses in the
digital humanities (Salway and Herman, 2011). LDA groups the words
of a corpus into semantic “topics” by considering the set of documents
in which they co-occur. The vector of topic frequency counts within a
document can then be used as a coarse-grained approximation of its
content.

Although the frequencies of LDA topics naturally vary throughout
the course of a long text, LDA does not directly model temporal vari-
ation. Subsequent work proposes a variety of Bayesian topic models
which make more sophisticated use of document metadata, including
sequence ordering (Blei and Lafferty, 2006, Kim and Sudderth, 2011).
These papers tend to evaluate using a combination of held-out like-
lihood and eyeball, often on corpora of scientific journal articles—an
approach criticized by Chang et al. (2009) and Mimno and Blei (2011).

1Sentiment analysis systems which work on whole clauses or sentences are an active
research area (Socher et al., 2011, Yessenalina and Cardie, 2011, among others); to
my knowledge, such systems have not been used to construct emotional trajectory
models.

Abstract Representations of Plot Structure / 7

The emperor rules the kingdom. The kingdom holds on to the emperor.
The emperor rides out of the kingdom. The kingdom speaks out against
the emperor. The emperor lies.

FIGURE 2 Story generated by an event-based model with coherence
reranking (McIntyre and Lapata 2010).

How these representations compare to sentiment or other features on
novelistic text is an open question.

This paper uses the simpler method of running standard LDA and
measuring temporal patterns on the resulting topics. While more so-
phisticated methods do have published implementations, they tend to
be slower, less stable and less scalable than LDA. Since the results
in this paper show that topic model features are useful in capturing
a global beginning-to-end temporal structure, evaluating these more
complex topic models is a promising direction for future work.

2.2 Event-based representations

In contrast to these abstract representations are models that stay closer
to the level of specific events extracted from sentences in the text. Such
models have usually been applied to shorter fictional narratives such as
fables. Many of these follow from narrative schema extraction (Cham-
bers and Jurafsky, 2009), which attempts to learn representations for
events in news stories. These representations are similar to Schankian
scripts (Schank and Abelson, 1977); they are networks of events in
temporal sequence, with slots for specific actors. For instance, “terror-
ist attacks target” can be followed by “terrorist being arrested”.

Similar representations for fiction were investigated by McIntyre and
Lapata (2009), who use them to generate short fables. In later work
(McIntyre and Lapata, 2010), they add a coherence component to en-
sure smooth sentence-to-sentence transitions. Figure 2 shows a sample
output. The lack of global “plot” structure is an important shortcoming
of this work; while the generated stories describe reasonable sequences
of events, the stories do not seem to raise or resolve any central conflict.

Similar narrative models are considered by Li et al. (2012), who learn
event networks from a corpus of short texts elicited through crowd-
sourcing. These texts focus on specific events such as bank robberies
or dates. Importantly, although the goal of this work is to learn knowl-
edge that may be useful in constructing or understanding narratives,
the elicited texts themselves are not fictional narratives intended to
entertain but simple descriptions; thus the models capture sequences

8 / LiLT volume 12, issue 5 October 2015

of events without necessarily producing a satisfying plot structure.
Finlayson (2009) also produces event network models, following a

Proppian structuralist analysis of story structure (Propp, 1968). It has
been evaluated against hand-annotated Russian folktales and a small
corpus of Shakespeare’s plays.

Early work by Lehnert (1981) proposes a model which represents
emotion and goal information alongside events. This plot-unit model
treats positive and negative sentiment as primitives, and builds up a
plot as a set of actions which result from, and cause, characters to feel
good or bad. For instance, a retaliation has the form: “Because Y’s
[action] caused a [negative state] for X, X [acted] to cause a [negative
state] for Y”. Early implementations relied heavily on hand-engineered
domain knowledge, and thus did not generalize well. AESOP (Goyal
et al., 2010) attempts to modernize this representation by learning
which verbs cause positive or negative states automatically. A similar
goal-based representation is learned in O’Neill and Riedl’s (2011) work,
which performs story generation by abductive plan inference. These
representations are sophisticated, but brittle; AESOP’s accuracy is
poor even for short fables, and the authors conclude that the approach
is unlikely to be scalable. Elson et al. (2010) present Scheherezade, a
system for human annotation of AESOP-like goal structures; a small
annotated corpus is available (Elson and McKeown, 2010). However,
extending this expensive hands-on annotation task to novelistic texts
is likely to be prohibitively time-consuming.

Kazantseva and Szpakowicz (2010), while relying on sentence-based
information, is somewhat different in its objectives. Rather than mod-
eling plot structure, it attempts to produce “spoiler-free” summaries
which exclude plot detail while incorporating character and setting de-
scription, using features such as stative verbs (“stand, know, be lo-
cated”) to find appropriate sentences. They analyze the performance
of summarization systems on fictional text and find that conventional
systems are deeply inadequate; this serves as further motivation for our
own work.

2.3 Kernels, symmetrization and parameter optimization

The systems presented in this paper are kernel functions, a standard
tool in machine learning for feature-based classification and regression
(Bishop, 2006, chapter 6). A kernel is a similarity function k(X,Y) ≥ 0,
with 0 representing minimal similarity. A valid kernel represents an
inner product in some feature space φ, so that k(X,Y) = φ(X) · φ(Y).
The linear kernel takes φ as the identity and is simply a dot product.

More complex kernels have been proposed for the case where X and

Abstract Representations of Plot Structure / 9

Y are structured objects such as graphs (Vishwanathan et al., 2010). A
common method of extending a simple kernel to an object with many
substructures is to avail oneself of the convolution theorem (Haussler,
1999) which applies the simple kernel to all pairs of substructures and
sums the result.

K(X,Y) =
∑
u∈X

∑
v∈Y

k(u, v) (1)

Other methods have been proposed, although not all of them result
in theoretically valid kernels. The approach here follows the work of
Boughorbel et al. (2004) in computer vision, who compute a mapping
between X and Y and only evaluate k(u, v) for matched pairs:

kmatch(X,Y) = max
matching F :u↔v

∑
u∈X

k(u, F (u)) (2)

Such a function can no longer be represented as a linear product,
since it includes a maximization operator. However, it can still be used
to provide positive similarities. Because these functions remain similar
to kernels in practice, the paper will continue to describe them as such.

Additional intuition for this approach comes from machine transla-
tion (MT), where the use of a one-to-one mapping in word alignment
is known as symmetrization. Symmetrization is a common method for
improving word alignments. Suppose that an alignment between two
sentences indicates that word u translates as v; when aligning in re-
verse, v should become u again. In this work, the same holds true for
characters—character u from work X (Elizabeth Bennet from Pride
and Prejudice) should correspond only to character v from work Y
(Jane from Jane Eyre). If Elizabeth took on the roles of a whole set
of characters, this would be a point of dissimilarity between the two
novels. The simplest technique for computing a symmetric alignment is
to run independent one-to-many models in each direction and take the
intersection. MT researchers have improved upon this by computing a
matching explicitly (Matusov et al., 2004) or training the component
models directly to encourage agreement (Liang et al., 2006).

When the problem of interest involves multiple sets of features, it
may be useful to set kernel parameters weighing the different features
to optimize performance. This task is sometimes considered as multiple
kernel learning (Gnen and Alpaydın, 2011); a variety of methods have
been used. In this paper, kernel parameters are optimized using rank
learning: attempting to make pairs of training instances which should
be similar score higher under k than less similar ones. The ranking pro-
tocol was designed following Feng and Hirst (2012), who used a similar
procedure to optimize parameters in a model of document coherence.

10 / LiLT volume 12, issue 5 October 2015

The specific rank learner used is SVM-rank (Joachims, 2006), which
solves an optimization problem based on ordinal regression to approx-
imately minimize the number of pairs ranked in the wrong order.

2.4 Evaluation by reordering

The experiments presented here test the kernel similarity function by
challenging it to distinguish novels from artificial “negative examples”.
These are created from real texts by permuting the order of the chap-
ters. This procedure originated in the discourse coherence literature
(Karamanis et al., 2004, Barzilay and Lapata, 2005), in which it is as-
sumed that most reorderings of a text cause a loss of coherence and are
therefore suitable as negative examples. Post (2011) uses a similar idea
to evaluate a model of grammaticality.

The use of artificial negative examples has both strengths and weak-
nesses. On one hand, it is highly replicable and objective in domains
where annotation would be expensive and unreliable. In this case, hu-
man annotators would have to decide which real novels are more or less
similar to one another. On an artificial task, systems can be evaluated
for at least basic effectiveness without this kind of resource.

On the other hand, performance on artificial reordering tasks can
fail to correlate with performance on more realistic tasks (Elsner et al.,
2007). Random permutations can cause particular problems, since they
often create local structures (for instance, a rarely mentioned minor
character who appears in two widely separated chapters) which are
uncommon in real documents. The use of novels in reverse order is in-
tended to guard against this to some degree, because reversals destroy
the global plot structure of the novel while preserving its local con-
sistency. In any case, failure to correlate is primarily a problem with
well-performing systems; systems which fail badly on tests with artifi-
cial documents rarely succeed on more complex ones.

Another potential testing strategy is that of Bamman et al. (2014),
who make a series of pre-registered hypotheses on the similarity of char-
acters by the same author or of the same type. For example, Elizabeth
Bennet is more similar to Elinor Dashwood than Allan Quatermain
(“Austenian protagonists should resemble each other more than they
resemble a grizzled hunter”). Such tests are more realistic, since they
are directly based on human intuition. However, they require input from
a literary scholar and do not transfer easily between corpora. They are
also unsuitable for training a machine learning algorithm, since that
requires a large set of training instances to optimize against, while the
set of hypotheses created by a literary scholar is typically small. Thus,
this evaluation strategy seems complementary to the use of artificial

Abstract Representations of Plot Structure / 11

examples. Here, an evaluation in terms of literary hypotheses is left for
future work.

3 Creating representations

As stated, the overall goal of this paper is to design systems for mea-
suring the similarity of plot structures by comparing the frequency of
linguistic features over time. This section discusses in detail the basic
operations used to compute frequency-over-time trajectories for senti-
ment words, LDA topics and characters in novels. Two kinds of repre-
sentations are constructed. Single-trajectory representations track the
frequency of different lexical features across the narrative as a whole. In
character-trajectory representations, on the other hand, each character
in the novel has their own set of associated trajectories, indicating the
frequency of appearance and the frequency of different lexical features
associated with them.

The corpus used in all experiments consists of 50 novels, listed in
the appendix. All novels are downloaded from the Project Gutenberg
Website (www.gutenberg.org) in raw text form; the Gutenberg header
and footer are stripped, as are introductory and concluding material by
editors, critics or publishers. Since machine learning is used to optimize
system parameters, the data are divided into a training set of 20 novels,
used to establish the parameters, and a test set of 30 novels, reserved
for evaluation.

3.1 Single trajectories

Most of the representations described here measure lexical frequency
over time. Such systems require a particular lexicon of relevant words.
This study uses two such lexicons: Mohammad and Turney’s (2010)
crowdsourced sentiment lexicon, and topics from LDA (Blei et al.,
2001). These word frequency systems represent a text as the count,
for each chapter, of how often words from a particular lexical category
appear, normalized by the total number of word tokens from the lexi-
con. For instance, a system using the category “anger” would represent
a 10-chapter novel as a 10-element list, with the first element being the
percentage of emotion words in chapter 1 in the “angry” category.

Mohammad and Turney’s (2010) lexicon is a list of words, each an-
notated for potential associations with various emotions by Amazon
Mechanical Turk workers. The version used here contains 14273 words;
the lexicon recognizes 8 different basic emotions (anger, anticipation,
disgust, fear, joy, sadness, surprise and trust) and two umbrella cat-

http://www.gutenberg.org/

12 / LiLT volume 12, issue 5 October 2015

Topic word 1 . . .

0 man reply lady gentleman boy head
1 love life heart world thought soul
2 mother father woman make year day
3 return person time receive give place
4 character world men feeling opinion mind
5 hand eye face voice speak word
6 form light woman air pass beauty
7 thing make letter time write read
8 room house door night time day
9 men foot man round horse time

TABLE 1 Most frequent words for LDA topics in our corpus.

egories, positive and negative, for a total of 10.2 As with any purely
lexical sentiment resource, it will mis-classify texts which are context-
specific, specific to some sense of the word, or negated by their semantic
context (“not happy”, “wish to be happy”).

The LDA topics are computed with Mallet (McCallum, 2002), strip-
ping stop words and specifying 10 topics (to keep parity with the num-
ber of emotions). Topic counts are computed from the output list of
topic indicator variables z. Table 1 shows the most common words
grouped in each topical category. In many cases the topics are quite in-
terpretable; topic 1 (“love, life, heart, soul”) seems to involve romantic
feeling, while topic 8 (“room, house, door”) covers setting details. But
the clustering is very coarse; less frequent words associated with topic
1 include non-romantic feeling words like “fear, hope, death”.

3.2 Character trajectories

A character-trajectory representation has a trajectory for each charac-
ter in the narrative. For instance, a system using character frequency as
its only feature represents a 10-chapter novel with three characters as
a bundle of three 10-element lists. Each list represents the normalized
frequency with which the associated character occurs in each chap-
ter. A system using both character frequency and anger represents the
novel as three bundles of two 10-element lists. Each bundle contains
the character frequencies in one list, and the frequency with which the
character is associated with “anger” words in the other.

To count how often a character appears over time, the system must
first compute a canonical list of the characters who appear in the text,
bearing in mind that one character may be called by many names. This

2The paper subsequently refers to all 10 of these as “emotion” or “sentiment”
categories.

Abstract Representations of Plot Structure / 13

computation follows Bhattacharya and Getoor (2005) in extracting a
list of proper names and performing cross-document coreference reso-
lution using a series of filters which cluster them together. A related
framework is described in (Coll Ardanuy and Sporleder, 2014).

The system begins by detecting proper nouns and discarding those
which occur fewer than 5 times. Identical mentions longer than two
words are merged into a single entity, so that for example all mentions
of “George Osborne” are taken to refer to the same person. Next, each
name is assigned a gender—masculine, feminine or neuter—using a list
of gendered titles, then a list of male and female first names from the
1990 US census. Mentions are then merged when each is longer than
one word, the genders do not clash, and first and last names are con-
sistent (Charniak, 2001). This step would cluster “George Osborne”,
“Mr. Osborne” and “Mr. George Osborne”. Single-word mentions are
then merged, either with matching multiword mentions if they appear
in the same paragraph, or else with the multi-word mention that occurs
in the most paragraphs—so when “George” appears close to “George
Osborne”, the two refer to the same person. Finally, mentions are dis-
cared if they still have not been assigned a non-neuter gender, or if they
match synset location.n.01 in WordNet (Miller et al., 1993); these are
likely to be place names like “London”, which are proper noun phrases
but not characters.

These coreference heuristics still have some difficulty in coping with
the variety of names used by characters in 19th-century novels. These
stories often contain characters who are related to one another (and
thus share a last name); characters refer to one another by nickname;
titles—and even names—can change over time (due to marriage, mil-
itary promotion and so on). For instance, in Thackeray’s Vanity Fair,
Mr. (John) Osborne has a son, George Osborne, initially with the title
Master, then Mr., but eventually rising to the rank of army captain.
George, in turn, marries (making his wife Mrs. George Osborne) and
has a son, who is inconveniently named George Osborne. By the end of
the book, this son is himself known as Mr. Osborne. Table 2 shows how
our system tries to resolve this confusion; since it insists that titles be
consistent, it produces a somewhat excessive list of characters. This is
one of the harder cases in the corpus, however, and in general the re-
sults look sensible, although there is no annotated novelistic coreference
corpus with which to validate them.

To represent a novel using character frequency, the system prepro-
cesses the text by splitting it into paragraphs. The coreference heuris-
tics are used to decide which characters appear in each paragraph. The
frequency of a character in a chapter is defined as the number of para-

14 / LiLT volume 12, issue 5 October 2015

Character (longest name) gender count

Mrs. George Osborne F 662
Georgy Osborne N 344
Capt. George Osborne M 153
Mr. Osborne M 146
Miss Jane Osborne F 75
Master George M 8
Mr. George M 7
Lt. Osborne M 7

TABLE 2 Names (over frequency cap) of characters named “George” or
“Osborne” detected in Vanity Fair. “Mr. Osborne” can refer to multiple

characters. “Capt. Osborne” sometimes refers to the same person as “Mr.
Osborne”. “Georgy” is missing from the name list and fails to be assigned a

gender, so it is discarded from consideration in character-based systems.

graphs in which they appear, divided by the total number of character
appearances.

Character-specific lexical trajectories are computed by counting lexi-
con items—sentiment or LDA—in paragraphs featuring a specific char-
acter. Such trajectories naturally reflect overall character frequency,
since there can be more instances of particular words if there are more
paragraphs overall. To remove this correlation so that the character-
frequency features are not redundant, they are normalized per character
rather than with reference to the whole text. To compute this normal-
ized score, the count is first set to 0 if the character frequency for the
chapter is less than .05 (so that dividing by a small number does not
inflate very uncertain statistics). Then the count is divided by the total
number of lexicon items appearing in paragraphs of the chapter which
mention the specific character (rather than dividing by the number of
lexicon items in the chapter overall).

All trajectories are smoothed using a moving average with a window
size of 10, forcing them to vary smoothly over time:

x′(t) =
1∑t+10

i=t−10 |t− i|

t+10∑
i=t−10

|t− i|x(i) (3)

After smoothing, each trajectory is projected onto a fixed basis of
50 points using linear interpolation. This enables fast comparison of
trajectories, because it yields a fixed-length discrete representation of
each one.

Abstract Representations of Plot Structure / 15

4 Kernel-based measurements

After preprocessing, a novel is represented as a set of time-varying
trajectories, each representing the proportional frequency of some fea-
ture (e.g., “anger” words) in each chapter. In single-trajectory systems,
there is one set of trajectories for the entire novel, with a trajectory
for each lexical feature. In character-based or hybrid character/lexicon
systems, characters have their own associated trajectories. A similar-
ity function for representations of this type can be defined as a kernel
function k(X,Y) which will be large when novels X and Y are similar
and small when they are not.

The function k for this representation relies on a function c which
compares trajectories for a single feature. The system uses the simple
dot product (the linear kernel function),3 defining the similarity of a
pair of trajectories u and v (e.g. “anger” over time in two novels) as:

c(u, v) = u • v (4)

To combine trajectories for multiple features (various emotions or
topics), the total similarity k is defined as a weighted sum controlled
by a parameter vector θ which represents the relative weight assigned
to each one in the overall similarity function:

k(u, v; θ) =
∑

coord i

θic(ui, vi) (5)

This function k will be called the “single-trajectory plot kernel” since
it can be used to evaluate similarity for representations which do not
include per-character trajectories.

We cannot use k for representations with character features, because
there is no obvious way to determine which pairs of characters should
be compared with function c. For instance, should the system use k to
compare Elizabeth from Pride and Prejudice to Jane from Jane Eyre,
or to Rochester, or to someone else? One standard approach is to de-
fine kchar(X,Y) using the convolution theorem (Haussler, 1999, Equa-
tion 1), which compares each character u from X to all the characters
v from Y :

kchar(X,Y) =
∑
u∈X

∑
v∈Y

k(u, v; θ) (6)

3Another common choice would be the normalized cosine, a standard measurement
in information theory. In development, however, the normalized cosine caused prob-
lems, because it assigns high similarity to pairs of curves which have relatively small
values throughout. Such small values are generally uninteresting—every novel has
rare characters, but this does not represent any deep similarity in plot.

16 / LiLT volume 12, issue 5 October 2015

4.1 Symmetrization

Intuitively, the construction of kchar from c is intended to find two
novels more similar if characters from one correspond to the characters
from the other in a way that makes sense. For instance, Pride and
Prejudice is like Jane Eyre in that they both have a female protagonist,
a male love interest, and so forth. The convolution theorem does not
restrict itself to sensible alignments, however. It counts many-to-many
alignments (as if to allow a single character from Pride and Prejudice
to stand in for all the characters from Jane Eyre at once), and to
make things worse, it sums over all the alignments, so that many fairly
tenuous comparisons can “gang up” to render a pair of texts more
similar than a single good comparison.

As discussed in section 2.3, the use of a matching can improve per-
formance in such a system by forcing each character to map to only one
other character. The mapping gives each Pride and Prejudice character
a “best equivalent” character in Jane Eyre (ignoring “left-over” char-
acters), e.g., Elizabeth mapping to Jane, Darcy to Rochester, and so
forth. Following Matusov et al. (2004), the system computes an optimal
bipartite matching between characters with the Hungarian algorithm,
which works in polynomial time.

kcharsymm(X,Y) = max
matching F :u↔v

∑
u∈X

k(u, F (u)) (7)

4.2 Parameter estimation

The function k described in Equation 5 is controlled by a parameter
vector θ which controls the relative weight assigned to similarity with
respect to each feature. Since some of the feature sets used here are
relatively large (10 emotions and 10 LDA dimensions), some method
for automatic parameter tuning is desirable. This section describes a
training procedure, although its results show that it displays certain
ambivalence.

The procedure, following Feng and Hirst (2012), is based on rank-
ings. Since the system will be evaluated by using it to detect aberrant
novels, the training objective should not depend on the absolute simi-
larity values assigned to each novel pair, but on the difference between
the scores k(X,Y) and k(X,Y ′) where Y ′ is some kind of aberrant text.

As in any learning task, a training set of novels X1...n is used to
fix the parameters. For each Xi, the training program constructs aber-
rant texts X ′i,1...k, and assigns a rank to each aberrant ordering based
on its dissimilarity to the original text. The two choices used for X ′

correspond to the two settings for synthetic-data experiments reported

Abstract Representations of Plot Structure / 17

below: random permutations and reversals. When training to optimize
discrimination of random permutations, the system computes k = 10
random orderings of each training novel and ranks them by edit distance
from the identity permutation.4 When training to optimize reversals,
it uses a single X ′1, the reversed novel, for each training novel.

Training instances are generated for each ordered pair Xi, Xj . The
SVM-rank learner (Joachims, 2006) attempts to find parameters such
that the original novel Xi is more similar to the real novel Xj than it
is to the least aberrant permutation X ′j,1, more similar to X ′j,1 than to

X ′j,2, and so forth.5

k(Xi, Xj) > k(Xi, X
′
j,1) > k(Xi, X

′
j,2) > . . . > k(Xi, X

′
j,k)

As an example, consider the ordered pair Pride and Prejudice and
Jane Eyre as Xi, Xj .

6 The system produces chapter-by-chapter permu-
tations, ranked by edit distance from the original (schematically, these
might be called Jaen yrEe and naeE yJr) and then attempts to achieve
the ranking:

k(PP, JaneEyre) > k(PP, Jaen yrEe) > k(PP, naeE yJr)

Optimization is somewhat more complicated a symmetrized system,
because the matching acts as a latent variable, rendering the opti-
mization non-convex (Yu and Joachims, 2009). The system employs
an EM-like coordinate ascent procedure; it begins with an initial clas-
sifier, solves for the matching, and then reoptimizes the classifier. The
character frequency features yield good results in the experiments dis-
cussed below, so the initial weights are set to (character-frequency-
gender-matched: 1, character-frequency-gender-mismatched: 1). In de-
velopment experiments, running only a single iteration leads to the best
results, but this may be a function of the small size of the training set.

5 Experimental setup

In the experiments in this section, the system is used to distinguish
real novels in the test set (see the appendix) from artificial surrogates
produced by permuting them. Two conditions are reported: random
permutations and reversals. In each case, the permutations are per-
formed chapter-by-chapter.

The experiments consider pairwise classifications in which the sys-
tem is given access to a single training novel x along with a test pair

4Edit distance was one of the better-performing dissimilarity metrics in (Feng and
Hirst, 2012).

5The SVM-rank learner uses a hinge loss function and a linear kernel.
6The pair Jane Eyre as Xi and Pride and Prejudice as Xj is a separate instance
of the training set.

18 / LiLT volume 12, issue 5 October 2015

(y, yperm), and asked to decide whether y or yperm is the original. y
is only selected as the original if k(x, y) > k(x, yperm). Since this is a
binary forced choice, a random baseline would score 50%.

The systems to be tested vary in three dimensions. They may com-
pute a single trajectory of values for the entire novel or character tra-
jectories for every character. They may use sentiment features or LDA
features (or, in the case of character trajectories, they may use only
the frequency with which each character appears). Finally, for char-
acter trajectory systems only, they may compare representations us-
ing a symmetrized or unsymmetrized kernel. The details of single and
character-based representations appear in sections 3.1 and 3.2. The
feature sets are described in section 3.1. Single-trajectory representa-
tions are always compared with the function k (Equation 5); the sym-
metrized kernel is kcharsymm (Equation 7) and the unsymmetrized one is

kchar (Equation 6), both described in section 2.3.
There are 30 test novels, and thus 30 × 29 = 870 pairwise com-

parisons. To avoid over-analyzing miniscule differences in results due
only to luck, a statistical test must be used to indicate when the gap
between two systems is statistically significant. A variety of common
tests cannot be used since they assume different test trials to be in-
dependent and identically distributed. That is not the case here since
each test novel y participates in multiple comparisons, with different
novels standing in as x. Instead, significance is assessed using a Monte
Carlo permutation test with 100000 random permutations.7 Differences
between systems are reported as significant if they reach the p < .05
level—that is, if the probability that they are due only to chance is
assessed as less than 5%.

6 Results

6.1 Accuracy scores

The accuracy scores of various single-trajectory systems appear in Ta-
ble 3, and those of character-trajectory systems in Table 4. For instance,
the first row of Table 3 shows that a representation based on “anger”
as a proportion of all sentiment words in a chapter makes it possible
to distinguish from the originals 74% of randomly permuted novels in
the development set. Only 64% of reversed novels can be distinguished.
Results in the test data are somewhat different, with 64% of permuted
novels distinguishable and 62% of reversals. The last row of the table

7For kernels which can be represented as inner products, the Maximum Mean Dis-
crepancy test (Gretton et al., 2007) is more suitable but, as discussed in section 2.3,
the max operator in the symmetric kernel means that this condition does not hold.

Abstract Representations of Plot Structure / 19

Dev. Order Dev. Reverse Order Reverse

Anger 74 64 64 62
Anticipation 51 47 55 55
Disgust 70 51 62 53
Fear 66 59 71 65
Joy 43 52 51 51
Sadness 67 61 61 64
Surprise 40 66 60 55
Trust 43 73 60 53
Negative 63 51 65 60
Positive 40 63 60 65
Sentiment 65 66 57 65
LDA 78 83 67 89†sentiment

Sentiment/LDA 80 83 71 88†sentiment

TABLE 3 Development and test accuracy (%) for various single-trajectory
systems using Equation 5. † (only computed on test) indicates a significant

difference (p < .05).

Order Rev.

Character freq. 61 50
Character freq. (symm.) 81†freq,lda−symm 52
Char. freq./sentiment 53 50
Char. freq./sentiment (symm.) 81†sentiment,lda−symm 54
Char. freq./LDA 57 59†freq,sent
Char. freq./LDA (symm.) 72†lda 56
Freq./sentiment/LDA 55 57
Freq./sentiment/LDA (symm.) 82†combo,lda−symm 57

TABLE 4 Test accuracy (%) for character-trajectory systems.
Non-symmetrized systems use Equation 6, symmetrized ones use

Equation 7. † indicates a significant difference (p < .05).

Order Rev.

Best (Elsner, 2012) 62 52
1 Single-traj. combined 71†4 88†3,4
2 Single-traj. LDA 67 89
3 Char.-traj. combined (symm.) 82†4 57
4 Char.-traj. LDA 57 59

TABLE 5 Comparison of best systems by accuracy (%) using single
trajectory and character trajectory systems, with significance tests.

20 / LiLT volume 12, issue 5 October 2015

shows that a system combining all sentiment and LDA features (with
learned weights) distinguishes 71% of randomly permuted novels in the
test set and 88% of reversed ones from the original, and that it is sig-
nificantly better than a system using only sentiment.

Comparing the results in Table 3 for single features (above the line)
with those for learned combinations (below) shows that while training
is generally effective, its results are not particularly impressive. This
seems to reflect several issues. One is that novels are quite heterogenous,
and parameters from the training set do not always work well in testing.
For instance, on the development set, trust is a good indicator for only
43% of the random permutations but is correct for 73% of the reversals.
On the test set, it is 60% accurate for random permutations and 53%
for reversals.

Another issue is that, for mathematical reasons, the learning system
aims only approximately to maximize the number of correctly ranked
pairs in the training set.8 This means that trained systems are not
guaranteed to outperform their components, even on the training data.
For instance, the learned sentiment trajectory system scores 65% on
reversals, no better than positive or fear on their own.

Nonetheless, learning-based systems are capable of effective pa-
rameter tuning, especially using the LDA features. The LDA single-
trajectory system, optimized for reverse permutations, scores 89%.
Using uniform weights instead of optimization (not shown in Table 3),
the result is significantly worse at 82%. Where the learning methods
fail to improve over single-feature systems, it seems likely that the
critical problem is insufficient training data.

Now, Table 4. Systems with character-specific trajectories perform
worse on reversals than those using single trajectories. While the LDA-
based single-trajectory system can distinguish these at the 89% level,
the corresponding character trajectory system with LDA features scores
only 59%. Higher performance, however, is possible for random order-
ings, on which simply comparing character frequencies scores 61%.

Using the symmetrization-by-matching technique (Equation 7) im-
proves this ordering result substantially. All matching-based systems
are significantly better at random orders than their un-symmetrized
counterparts. Frequency alone is effective in 81%; sentiment and the
combined model perform comparably, although they do not improve,
possibly because the development set is too small to get good parameter

8The approximation used is described fully by Joachims (2006). In development
experiments using a maximum entropy system, which uses a different approxima-
tion to the training error (Bishop, 2006, chapter 4), the trained system actually
performed worse on the training set than a system with uniform weights.

Abstract Representations of Plot Structure / 21

estimates.
The results across different representations are reported in Table 5. It

is clear that a single trajectory is better for reversals, with scores of 89%
using LDA versus 59% for a character-trajectory system. Character-
based systems are numerically better for orderings (82% using all fea-
tures versus 71% for a single-trajectory system), although the difference
does not reach significance. LDA features are more effective than senti-
ment overall, and combining the two feature sets seems to add relatively
little—compare row 1 to 2 and row 3 to 4.

6.2 Comparison to (Elsner, 2012)

The earlier system presented in Elsner (2012) differed from this one in
several ways. A few differences are minor: the name resolution algorithm
presented here uses a better gender heuristic, and the definition of
the basic trajectory comparison c (Equation 4) has been simplified by
dropping a bag-of-unigrams feature set which appears to have little
effect on performance. The basic character frequency system with these
changes in place (Table 4) scores 61% on random orderings. This is
comparable to the 60% reported by Elsner (2012) for a character-based
kernel, suggesting that these simplifications have little effect.

The major additions are the use of Mohammad and Turney’s (2010)
sentiment lexicon rather than that in (Wilson et al., 2005), the use of
LDA features, and symmetrization. Table 5 shows the results of the best
earlier system described in (Elsner, 2012). That system is outperformed
by the best systems described here, scoring 62% on orderings versus
82% with symmetrized character features and 52% on reversals versus
89% with LDA.

There is also a major subtraction. Elsner (2012) presented a second-
order system; it takes character relationships into account, and outper-
forms the character-to-character systems. Once the new features have
been incorporated, the second-order system performs worse than the
basic systems. In development experiments (not shown in Table 5),
adding the second-order relationship features to a system using charac-
ter frequencies and symmetrization decreases the best ordering result
from 81% to 78%. This suggests that although relationship information
gives some accurate cues to structure, it can also be misleading and will
need to be incorporated into realistic systems with care.

Finally, Elsner (2012) described a highly ineffective single-trajectory
system (not shown in Table 5) which performed essentially at chance.
He concluded that such systems were inferior to those with character in-
formation. This appears to be untrue in general. That single-trajectory
system used as its only feature the proportion of “subjective” words

22 / LiLT volume 12, issue 5 October 2015

from Wilson et al. (2005). The results in Table 3 show single-trajectory
that systems can be quite effective when given the right feature set.
Better sentiment features score 57% on ordering and 65% on reversals,
and LDA scores 67% on orderings and 89% on reversals.

7 Conclusions

Analysis of the synthetic permutation-discrimination task reveals sev-
eral interesting facts. First, while using a larger sentiment lexicon def-
initely improves over a smaller one, sentiment words on their own are
still a cue to plot structure less effective than LDA topics, especially
for reversals. This suggests that the plot of a 19th-century novel is in
fact tied closely to domain events such as, e.g., marriages—more than
to sentiment patterns like happiness—and that the domain-based cues
are particularly useful in detecting beginnings and endings.

On the other hand, symmetrized character frequency is, on its own,
overwhelmingly the best indicator for distinguishing random permuta-
tions from real texts. That LDA models do not do especially well on
this case indicates that the middle sections of a novel vary widely in
terms of domain events (middle sections vary in their inclusion of events
like travel, marriages of minor characters, or illness and death). What
is more likely to stay constant is the way in which the narrative directs
its focus toward main characters, while introducing minor characters
who can attain importance for shorter periods before fading back into
the background.

Constructing an explicit matching between characters is helpful for
character-based systems, regardless of the feature set. Matchings allow
the system to check that the two texts not only incorporate a similar
set of emotions or actions, but also partition them among different
characters in similar ways.

Character-specific emotions or LDA topics, however, do not seem
to improve results by sharpening the model’s ability to distinguish
between character roles, at least as far as random permutations are
concerned; on reversals, they improve significantly over character fre-
quency alone, but the effect is not large. This suggests that, even in
a character-based system, such features capture whole-story trends in-
volving beginnings and ends. In other words, character frequency alone
does a good job in distinguishing “choppy” from “fluent” patterns. All
the same, specialized lexical frequencies (whether measured over the
whole text or per-character) are better representations of the overall
plot arc.

It seems possible that similarity measurement systems of this type

Abstract Representations of Plot Structure / 23

may eventually be useful in search and recommendation systems for
fiction. This, however, would require additional resources beyond those
presented here. The disappointing performance from parameter tun-
ing suggests that larger datasets for artificial reordering might be use-
ful, since they could allow the system to use its existing feature set
more productively, or to work effectively with more features. Even so,
while artificial tasks are likely to remain helpful for cheaply ruling out
bad representational choices during development, they are probably
not sufficient to fine-tune a system that must measure similarity be-
tween pairs of real novels rather than between real and reordered ones.
Training data for this scenario are likely to require effort from human
annotators. Future work with a practical recommendation system may
help to clarify how well systems like the current work can benefit the
production of a truly effective system for novelistic texts.

Acknowledgments

I am grateful to the editors of this volume, especially Stan Szpakowicz,
and to three anonymous reviewers for their comments and suggestions.
The discussion of related work owes much to suggestions by Diane
Litman, Janice Wiebe and Robyn Warhol.

24 / LiLT volume 12, issue 5 October 2015

References

Alm, Cecilia Ovesdotter and Richard Sproat. 2005. Emotional Sequencing
and Development in Fairy Tales. In ACII , pages 668–674.

Ang, Robert. 2012. The Writer’s Toolkit . Master’s thesis, University of
Edinburgh.

Bamman, David, Brendan O’Connor, and Noah A. Smith. 2013. Learning
Latent Personas of Film Characters. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 352–361. Sofia, Bulgaria: Association for Computational
Linguistics.

Bamman, David, Ted Underwood, and Noah A. Smith. 2014. A Bayesian
Mixed Effects Model of Literary Character. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 370–379. Baltimore, Maryland: Association
for Computational Linguistics.

Barzilay, Regina and Mirella Lapata. 2005. Modeling Local Coherence: an
Entity-Based Approach . In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL’05).

Bhattacharya, Indrajit and Lise Getoor. 2005. Relational clustering for multi-
type entity resolution. In Proceedings of the 4th international workshop on
Multi-relational mining , MRDM ’05, pages 3–12. New York, NY, USA:
ACM. ISBN 1-59593-212-7.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag
New York, Inc. ISBN 0387310738.

Blei, David, Andrew Y. Ng, and Michael I. Jordan. 2001. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3:2003.

Blei, David M. and John D. Lafferty. 2006. Dynamic Topic Models. In ICML.

Boughorbel, Sabri, Jean-Philippe Tarel, and Francois Fleuret. 2004. Non-
Mercer Kernels for SVM Object Recognition. In BMVC , pages 1–10.

Chambers, Nathanael and Dan Jurafsky. 2009. Unsupervised Learning of
Narrative Schemas and their Participants. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP , pages
602–610. Suntec, Singapore: Association for Computational Linguistics.

Chang, Jonathan, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and
David M. Blei. 2009. Reading Tea Leaves: How Humans Interpret Topic
Models. In Neural Information Processing Systems.

Charniak, Eugene. 2001. Unsupervised learning of name structure from coref-
erence data. In Second Meeting of the North American Chapter of the
Association for Computational Linguistics (NACL-01).

Coll Ardanuy, Mariona and Caroline Sporleder. 2014. Structure-based Clus-
tering of Novels. In Proceedings of Computational Linguistics for Literature
(CLFL). Gothenburg, Sweden.

References / 25

Crane, R.S. 2002. The Concept of Plot and the Plot of Tom Jones. In
B. Richardson, ed., Narrative dynamics : essays on time, plot, closure,
and frames. The Ohio State University Press.

Elsner, Micha. 2012. Character-based kernels for novelistic plot structure.
In Proceedings of the 13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 634–644. Avignon, France:
Association for Computational Linguistics.

Elsner, Micha, Joseph Austerweil, and Eugene Charniak. 2007. A unified
local and global model for discourse coherence. In Proceedings of HLT-
NAACL ’07 .

Elson, David, Nicholas Dames, and Kathleen McKeown. 2010. Extracting
Social Networks from Literary Fiction. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 138–147.
Uppsala, Sweden: Association for Computational Linguistics.

Elson, David K. and Kathleen R. McKeown. 2010. Building a Bank of Seman-
tically Encoded Narratives. In N. C. C. Chair), K. Choukri, B. Maegaard,
J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, eds., Proceed-
ings of the Seventh conference on International Language Resources and
Evaluation (LREC’10). Valletta, Malta: European Language Resources
Association (ELRA). ISBN 2-9517408-6-7.

Feng, Vanessa Wei and Graeme Hirst. 2012. Extending the Entity-based Co-
herence Model with Multiple Ranks. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics,
pages 315–324. Avignon, France: Association for Computational Linguis-
tics.

Finlayson, Mark A. 2009. Deriving narrative morphologies via analogical
story merging. In New Frontiers in Analogy Research: Proceedings of the
Second International Conference on Analogy , pages 127–136. Sofia, Bul-
garia: New Bulgarian University Press.

Goyal, Amit, Ellen Riloff, and Hal Daume III. 2010. Automatically Producing
Plot Unit Representations for Narrative Text. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing , pages
77–86. Cambridge, MA: Association for Computational Linguistics.

Gretton, Arthur, Karsten M. Borgwardt, Malte Rasch, Bernhard Schlkopf,
and Alexander J. Smola. 2007. A Kernel Method for the Two-Sample-
Problem. In B. Schlkopf, J. Platt, and T. Hoffman, eds., Advances in
Neural Information Processing Systems 19 , pages 513–520. Cambridge,
MA: MIT Press.

Gnen, Mehmet and Ethem Alpaydın. 2011. Multiple kernel learning algo-
rithms. The Journal of Machine Learning Research 12:2211–2268.

Haussler, David. 1999. Convolution Kernels on Discrete Structures. Tech.
Rep. UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz.

Huff, Jason. 2010. Autosummarize. McNally Jackson Books. http://jason-
huff.com/projects/autosummarize/.

http://jason-huff.com/projects/autosummarize/
http://jason-huff.com/projects/autosummarize/

26 / LiLT volume 12, issue 5 October 2015

Joachims, Thorsten. 2006. Training linear SVMs in linear time. In Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining , pages 217–226. ACM.

Karamanis, Nikiforos, Massimo Poesio, Chris Mellish, and Jon Oberlander.
2004. Evaluating Centering-Based Metrics of Coherence. In ACL, pages
391–398.

Kazantseva, Anna and Stan Szpakowicz. 2010. Summarizing short stories.
Computational Linguistics pages 71–109.

Kim, Dae Il and Erik B. Sudderth. 2011. The Doubly Correlated Nonpara-
metric Topic Model. In NIPS , pages 1980–1988.

Lehnert, Wendy. 1981. Plot Units and Narrative Summarization. Cognitive
Science 4:293–331.

Li, Boyang, Stephen Lee-Urban, Darren Scott Appling, and Mark O Riedl.
2012. Crowdsourcing narrative intelligence. Advances in Cognitive Systems
2:25–42.

Liang, Percy, Ben Taskar, and Dan Klein. 2006. Alignment by agreement.
In Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Compu-
tational Linguistics, pages 104–111. Association for Computational Lin-
guistics.

Matusov, Evgeny, Richard Zens, and Hermann Ney. 2004. Symmetric word
alignments for statistical machine translation. In Proceedings of the 20th
international conference on Computational Linguistics, page 219. Associ-
ation for Computational Linguistics.

McCallum, Andrew. 2002. MALLET: A Machine Learning for Language
Toolkit.

McIntyre, Neil and Mirella Lapata. 2009. Learning to tell tales: A data-
driven approach to story generation. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 1-
Volume 1 , pages 217–225. Association for Computational Linguistics.

McIntyre, Neil and Mirella Lapata. 2010. Plot Induction and Evolutionary
Search for Story Generation. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages 1562–1572. Uppsala,
Sweden: Association for Computational Linguistics.

Miller, G., A.R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. 1993. In-
troduction to WordNet: an on-line lexical database. Tech. rep., Princeton
University.

Mimno, David and David Blei. 2011. Bayesian Checking for Topic Models. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Lan-
guage Processing , pages 227–237. Edinburgh, Scotland, UK.: Association
for Computational Linguistics.

Mohammad, Saif. 2011. From Once Upon a Time to Happily Ever After:
Tracking Emotions in Novels and Fairy Tales. In Proceedings of the 5th

References / 27

ACL-HLT Workshop on Language Technology for Cultural Heritage, Social
Sciences, and Humanities, pages 105–114. Portland, OR, USA: Association
for Computational Linguistics.

Mohammad, Saif and Peter Turney. 2010. Emotions Evoked by Common
Words and Phrases: Using Mechanical Turk to Create an Emotion Lexi-
con. In Proceedings of the NAACL HLT 2010 Workshop on Computational
Approaches to Analysis and Generation of Emotion in Text , pages 26–34.
Los Angeles, CA: Association for Computational Linguistics.

Mohammad, Saif M. 2012. From once upon a time to happily ever after:
Tracking emotions in mail and books . Decision Support Systems 53(4):730
– 741.

O’Keefe, Timothy, Silvia Pareti, James R. Curran, Irena Koprinska, and
Matthew Honnibal. 2012. A Sequence Labelling Approach to Quote Attri-
bution. In Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language
Learning , pages 790–799. Jeju Island, Korea: Association for Computa-
tional Linguistics.

O’Neill, Brian and Mark Riedl. 2011. Toward a computational framework of
suspense and dramatic arc. In Affective Computing and Intelligent Inter-
action, pages 246–255. Springer.

Phelan, James and Peter J. Rabinowitz. 2012. Narrative as Rhetoric. In
D. Herman, J. Phelan, P. J. Rabinowitz, B. Richardson, and R. Warhol,
eds., Narrative Theory . The Ohio State University Press.

Post, Matt. 2011. Judging Grammaticality with Tree Substitution Grammar
Derivations. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 217–
222. Portland, Oregon, USA: Association for Computational Linguistics.

Propp, Vladimir. 1968. Morphology of the Folktale. University of Texas Press,
2nd edn.

Ryan, Marie-Laure. 1991. Possible worlds, artificial intelligence and narrative
theory . Bloomington: Indiana University Press.

Salway, Andrew and David Herman. 2011. Digital Corpora as Theory-
building Resource. In R. Page and B. Thomas, eds., New Narratives:
Stories and Storytelling in the Digital Age, pages 120–137. University of
Nebraska.

Schank, Rogert and Robert Abelson. 1977. Scripts, plans, goals and un-
derstanding: An inquiry into human knowledge structures. Hillsdale, NJ.:
Lawrence Erlbaum Associates.

Socher, Richard, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and
Christopher D. Manning. 2011. Semi-Supervised Recursive Autoencoders
for Predicting Sentiment Distributions. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language Processing , pages 151–
161. Edinburgh, Scotland, UK.: Association for Computational Linguistics.

28 / LiLT volume 12, issue 5 October 2015

Vishwanathan, S. V. N., Nicol N. Schraudolph, Risi Kondor, and Karsten M
Borgwardt. 2010. Graph kernels. The Journal of Machine Learning Re-
search 11:1201–1242.

Volkova, Ekaterina P., Betty Mohler, Detmar Meurers, Dale Gerdemann, and
Heinrich H. Blthoff. 2010. Emotional Perception of Fairy Tales: Achieving
Agreement in Emotion Annotation of Text. In Proceedings of the NAACL
HLT 2010 Workshop on Computational Approaches to Analysis and Gen-
eration of Emotion in Text , pages 98–106. Los Angeles, CA: Association
for Computational Linguistics.

Wallace, Byron. 2012. Multiple Narrative Disentanglement: Unraveling In-
finite Jest. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1–10. Montréal, Canada: Association for Com-
putational Linguistics.

Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing
Contextual Polarity in Phrase-Level Sentiment Analysis. In Proceedings
of Human Language Technology Conference and Conference on Empiri-
cal Methods in Natural Language Processing , pages 347–354. Vancouver,
British Columbia, Canada: Association for Computational Linguistics.

Yessenalina, Ainur and Claire Cardie. 2011. Compositional Matrix-Space
Models for Sentiment Analysis. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing , pages 172–182.
Edinburgh, Scotland, UK.: Association for Computational Linguistics.

Yu, Chun-Nam John and Thorsten Joachims. 2009. Learning structural
SVMs with latent variables. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning , ICML ’09, pages 1169–1176.
New York, NY, USA: ACM. ISBN 978-1-60558-516-1.

Appendix 29

Appendix

19th century novels used in our study

Development set (20 works)
Austen Emma, Mansfield Park, Northanger Abbey, Per-

suasion, Pride and Prejudice, Sense and Sensibil-
ity

Blackmore Lorna Doone
Brontë, Emily Wuthering Heights
Burney Cecilia (1782)
Carey Heriot’s Choice
Caird The Daughters of Danaus
Cholmondeley Red Pottage
Conrad Lord Jim
Corelli A Romance of Two Worlds, The Sorrows of Satan
Hardy Tess of the D’Urbervilles
James The Ambassadors
Scott Ivanhoe
Yonge The Heir of Redclyffe

Test set (30 works)
Braddon Aurora Floyd
Brontë, Anne The Tenant of Wildfell Hall
Brontë, Charlotte Jane Eyre, Villette
Bulwer-Lytton Zanoni
Disraeli Coningsby, Tancred
Edgeworth The Absentee, Belinda, Helen
Eliot Adam Bede, Daniel Deronda, Middlemarch
Gaskell Mary Barton, North and South
Gissing In the Year of Jubilee, New Grub Street
Hardy Far From the Madding Crowd, Jude the Obscure,

Return of the Native, Under the Greenwood Tree
James The Wings of the Dove
Meredith The Egoist, The Ordeal of Richard Feverel
Scott The Bride of Lammermoor
Thackeray History of Henry Esmond, History of Pendennis,

Vanity Fair
Trollope Doctor Thorne

