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Abstract

In this paper we propose a novel Bayesian model for unsu-
pervised bilingual character sequence segmentation of cor-
pora for transliteration. The system is based on a Dirich-
let process model trained using Bayesian inference through
blocked Gibbs sampling implemented using an efficient for-
ward filtering/backward sampling dynamic programming al-
gorithm. The Bayesian approach is able to overcome the
overfitting problem inherent in maximum likelihood training,
We demonstrate the effectiveness of our Bayesian segmen-
tation by using it to build a translation model for a phrase-
based statistical machine translation (SMT) system trained
to perform transliteration by monotonic transduction from
character sequence to character sequence. The Bayesian
segmentation was used to construct a phrase-table and we
compared the quality of this phrase-table to one generated
in the usual manner by the state-of-the-art GIZA++ word
alignment process used in combination with phrase extrac-
tion heuristics from the MOSES statistical machine transla-
tion system, by using both to perform transliteration genera-
tion within an identical framework. In our experiments on
English-Japanese data from the NEWS2010 transliteration
generation shared task, we used our technique to bilingually
co-segment the training corpus. We then derived a phrase-
table from the segmentation from the sample at the final iter-
ation of the training procedure, and the resulting phrase-table
was used to directly substitute for the phrase-table extracted
by using GIZA++/MOSES. The phrase-table resulting from
our Bayesian segmentation model was approximately 30%
smaller than that produced by the SMT system’s training pro-
cedure, and gave an increase in transliteration quality mea-
sured in terms of both word accuracy and F-score.

1. Introduction

Itis possible to couch the problem of transliteration as a prob-
lem of machine translation at the character level. In this
paradigm, decoding is usually assumed to proceed in a mono-
tone order, but otherwise the technique remains essentially
the same, except that the tokens used in the system are char-
acters rather than words. Recently systems based on phrase-
based statistical machine translation technology are being ac-
tively researched [1, 2, 3], and have achieved state-of-the-art
performance on this task. The approach makes no linguis-
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tic assumptions about the data and no intermediate phonetic
representation is required, because the transduction is directly
from grapheme to grapheme.

At the core of all phrase-based statistical machine transla-
tion systems (SMT) is the phrase-table. This table is the basic
set of building blocks that are used to construct the transla-
tion. The creation of a phrase-table during a typical training
procedure for a phrase-based SMT system consists of the fol-
lowing steps:

1. Word alignment using GIZA++ [4]

2. Phrase-pair extraction using heuristics (for example
grow-diag- final-and from the MOSES [5] toolkit)

This approach works very well in practice, but a more ele-
gant solution would be to arrive at a set of bilingual sequence-
pairs (we use this term to describe analogue of the phrase-pair
at the character level) in one step, from a generative model.
Unfortunately, when traditional methods that use the EM al-
gorithm to maximize likelihood are applied to the task, they
produce solutions that can grossly over-fit the data. As an
extreme example, the most likely segmentation of a corpus
into sequence-pairs, assuming no limits on sequence-pair size
would be the entire corpus as a single bilingual sequence-pair,
holding all the probability mass.

GIZA++ mitigates this problem by aligning the words
in a one-to-many fashion. The single word on one side of
the alignment acts as a constraint on the size of the bilin-
gual pairs. A similar approach can be taken in translitera-
tion, where a single character in one language is permitted to
align to multiple characters of the other, but not vice versa.
This approach is reasonable for English-Chinese translitera-
tion [6, 7], where one Chinese character can be assumed to
map to several English characters.

In GIZA++ this one-to-many alignment is done twice:
from both source-to-target and also from target-to-source. A
table of word-to-word alignments is then constructed from
(typically the intersection) both of these alignments. Addi-
tional word alignments that are not in the intersection are
added based on evidence and heuristics, and finally all pos-
sible phrase-pairs are extracted from the table of alignments
that are consistent with the table.

In [8, 9] many-to-many alignment is performed directly
using maximum likelihood training, but evidence trimming
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heuristics that exclude part of the available training data are
required to prevent the models from overfitting the data. [10]
have successfully applied a similar Bayesian technique to
grammar induction. [11] tackle the overfitting problem in
phrasal alignment by using a leave-one-out approach using a
strategy that despite being a different paradigm, shares many
of the characteristics of our approach.

In this paper we extend existing monolingual word seg-
mentation models ([12, 13]) to bilingual segmentation, and
provide a simple yet elegant way to directly segment a bilin-
gual training corpus in a many-to-many fashion without over-
fitting, using a Bayesian model.

This paper is organized as follows. In Section 2 we de-
scribe the Bayesian model used in our transliteration system.
Here we give an overview of the Dirichlet process model,
the Chinese Restaurant process and explain how our model
relates to these two representations. We also describe the
blocked Gibbs sampling technique used to train the model.
In Section 4 we describe the experiments we performed to
evaluate our model: the data sets, the baseline system and
the training procedure. Section 5 contains the experimental
results, and in Section 6 we conclude and mention promising
avenues for future research.

2. Methodology

Recently in the natural language processing field Bayesian
models have been proposed to tackle a variety of problems,
and have been found to be particularly effective in word seg-
mentation [12, 13]. The model we use in this paper is a
unigram Dirichlet process model. Using this approach to
perform bilingual segmentation for the general case of ma-
chine translation with re-ordering would be a challenging
undertaking, however for transliteration where the sequence
lengths are short and under the assumption that there is no
re-ordering, it is feasible to tackle the bilingual segmentation
problem directly without the need for specialized optimiza-
tion or annealing (we do use a block sampling algorithm, and
a dynamic programming algorithm).

2.1. Joint Source-channel Model

Let us assume we are given a bilingual corpus consisting of
a source sequence E{VI = <81, 89,...,sp> and a target se-
quence fﬁv = <ty,ta,...,tx>. We distinguish sequences
of characters from single characters by using a boldface font
with an overbar.

‘We adopt the joint source-channel model of [6] as the un-
derlying generative model, and we make the additional as-
sumption that the segments are independent of each other (our
approach can easily be extended to model these dependen-
cies at the expense of some additional complexity, see [13]).
Under this model, the corpus is generated through the con-
catenation of bilingual sequence-pairs (we will use this term
repeated throughout this paper to refer to corresponding se-
quences of source and target graphemes, as defined below).

A bilingual sequence-pair is a tuple (§,t) con-
sisting of a sequence of source graphemes to-
gether with a sequence of target graphemes (5,t) =
(<81, S9,...8;>,<l1,ta,... ,tj>).

The corpus probability is simply the probability of all
possible derivations of the corpus given the set of bilingual
sequence-pairs and their probabilities.

M N
p(siwatl ) :p(81,827...,8M,t1,t27...,tN)
=> p(v)
yer
(1)
where Y= ((glail)a"'a(gkaik’)a"'?(gKaiK)) is a

derivation of the corpus characterized by its co-segmentation,
and I' is the set of all derivations (co-segmentations) of the
corpus.

The probability of a single derivation is given by the prod-
uct of its component bilingual sequence-pairs:

K

p(v) = [ p(Gr. &) 2)

k=1

The corpus for our experiments is segmented into bilin-
gual word-pairs. We therefore constrain our model such that
both source and target character sequences of each bilingual
sequence-pair in the derivation of the corpus are not allowed
to cross a word segmentation boundary. Equation 2 can there-
fore be arranged as a product of word-pair w derivations of
the sequence of all word-pairs W in the corpus.

p((Sk, tr)) (3)

r(n=11 1]

wEW (5p,tk) €V

where 7, is a derivation of bilingual word-pair w.

2.2. Unigram Dirichlet Process Model

A Dirichlet process is a stochastic process defined over a set
S (in our case, the set of all possible bilingual sequence-pairs)
whose sample path is a probability distribution on S.

The Dirichlet process model we use in our approach is a
simple model that resembles the cache models used in lan-
guage modeling [14]. Intuitively, the model has two basic
components: a model for generating an outcome that has
already been generated at least once before, and a second
model that assigns a probability to an outcome that has not
yet been produced. Ideally, to encourage the re-use of model
parameters, the probability of generating a novel bilingual
sequence-pair should be considerably lower then the prob-
ability of generating a previously observed sequence pair.
This is a characteristic of the Dirichlet process model we use
and furthermore, the model has a preference to generate new
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sequence-pairs early on in the process, but is much less likely
to do so later on. In this way, as the cache becomes more
and more reliable and complete, so the model prefers to use
it rather than generate novel sequence-pairs. The probabil-
ity distribution over these bilingual sequence-pairs (including
an infinite number of unseen pairs) can be learned directly
from unlabeled data by Bayesian inference of the hidden co-
segmentation of the corpus. The ability of the model to assign
a probability to any unseen sequence-pair gives the technique
the ability to score candidate training data.

The underlying stochastic process for the generation of a
corpus composed of bilingual phrase pairs «y is usually written
in the following from:

Gla.c, ~ DP(a, Gp)
(§k,fk)‘G ~ G 4)

G is a discrete probability distribution over the all bilin-
gual sequence-pairs according to a Dirichlet process prior
with base measure G and concentration parameter . The
concentration parameter o > 0 controls the variance of Gj
intuitively, the larger « is, the more similar G will be to G.

2.2.1. The Chinese Restaurant Process

Unfortunately it is not possible to estimate G directly, since
there are an infinite number of possible bilingual sequence-
pairs, so instead we integrate over its possible values. To do
this we cast the bilingual sequence-pair generation process
as an instance of the Chinese Restaurant Process (CRP) [15].
According to this representation, every bilingual sequence-
pair corresponds to the dish served at its table in a potentially
infinite set of tables in a Chinese restaurant. The number
of customers seated at each table represents the cumulative
count of the bilingual sequence-pair. A new customer to the
restaurant can take a seat at an occupied table with a probabil-
ity proportional to the number of customers at that table, and
must eat that table’s dish, or can take a seat at an unoccupied
table with a probability proportional to a constant, in which
case they must eat a dish (a bilingual sequence-pair) chosen
by the chef (in this analogy the chef’s choice is in accordance
with the base distribution G).

2.2.2. The Base Measure

For the bhase measure that controls the generation of novel
sequence-pairs, we use a joint spelling model that assigns
probability to new sequence-pairs according to the following
joint distribution:

Go((s, ) = p([s|)p(s[[sl) > p([t))p(tl[t])

A Al
= |§|!e vy X We vy %)

where [§| and |t| are the length in characters of the source
and target sides of the bilingual sequence-pair; vs and v; are

261

that vocabulary (alphabet) sizes of the source and target lan-
guages respectively; and A; and \; are the expected lengths
of source and target.

According to this model, source and target sequences are
generated independently: in each case the sequence length
is chosen from a Poisson distribution, and then the sequence
itself is generated given the length. Note that this model is
able to assign a probability to arbitrary bilingual sequence-
pairs of any length in source and target sequence, but favors
shorter sequences in both.

Following [12] we assign the parameters g, A\; and «,
the values 2, 2 and 0.3 respectively. Ideally these parameters
should be learned from the data, however in our experiments
the settings were sufficient to give a useful co-segmentation
of the training corpus. Moreover, the system proved to be
insensitive to changes in these parameters in a set of pilot ex-
periments, converging to very similar final iteration samples
for a range of parameter settings.

2.2.3. The Generative Model

The generative model is given in Equation 6 below. The
equation assignes a probability to the k™ bilingual sequence-
pair (S, tx,) in a derivation of the corpus, given all of the other
sequence-pairs in the history so far (§_j,t ). Here —k is
read as: “up to but not including £”.

Pk t)) (5, E1)) =
N((8k, t)) + aGo((Sk, t)) ©)
N+a

In this equation, N is the total number of bilingual
sequence-pairs generated so far (the number of customers so
far), N((Sg,t;)) is the number of times the sequence-pair
(Sk, t.) has occurred in the history (the number of people
seated at its table). Gy and « are the base measure and con-

centration parameter as before.

3. Bayesian Inference
3.1. Gibbs Sampling

We used a blocked version of a Gibbs sampler for training. In
[14] they report issues with mixing in the sampler that were
overcome using annealing. In [13] this issue was overcome
by using a blocked sampler together with a dynamic program-
ming approach. Our algorithm is similar to that of [13], and
we found our sampler converged rapidly without annealing
(see Figure 2). The number of iterations was set by hand af-
ter observing the convergence behavior of the algorithm in
pilot experiments. We used a value of 30 iterations through
the corpus in all our experiments.

The sampling algorithm is shown in Algorithm 1 and the
iterative component proceeds as follows. Firstly the train-
ing set of bilingual word-pairs is permuted randomly, and a
bilingual word-pair is sampled from this permutation with-
out replacement. Secondly, a probability distribution over
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Input: Random initial corpus segmentation

Output: Unsupervised co-segmentation of the corpus according to the model

foreach iter=1 to Numliterations do
foreach bilingual word-pair w € randperm(VV) do
foreach co-segmentation ~y; of w do
Compute probability p(v;|h)

end

Update counts
end

end

where h is the set of data (excluding w) and its hidden co-segmentation

Sample a co-segmentation ~y; from the distribution p(~;|h)

Algorithm 1: The blocked Gibbs sampling algorithm.

all possible co-segmentations of the chosen bilingual word-
pair is calculated by obtaining probabilities with respect to a
model that does not include the bilingual word-pair, its pre-
vious segmentation information and respective counts. Due
to the short sequence lengths involved in transliteration, it is
possible to use a brute force approach to calculate this dis-
tribution, however for efficiency we extended the forward
filtering/backward sampling (FFBS) dynamic programming
algorithm of [13] to deal with bilingual segmentation. We
implemented this algorithm graphically as explained below.

We use a segmentation graph (shown in Figure 1) to guide
the process. This directed graph is a compact representa-
tion of all possible ways in which to co-segment a bi-lingual
pair. Each node represents a set of partial co-segmentation
hypotheses of the whole sequence that share the same se-
quences of source and target tokens, and each arc represents
the bilingual phrase pair used to transition from the tail of the
arc to the head. In the figure the arcs are labelled with the
log-probability of this sequence-pair (given by the model in
Equation 6), therefore the log-probability of a full segmenta-
tion hypothesis is given by the sum of the arc labels on the
respective path from the source node “<s>” to the sink node
“abba 73", The most probable co-segmentation is in-
dicated with bold arcs in the figure and corresponds to the
segmentation a/7 b/ ba/’¥, this is reasonable since both
“a” and “ba” are associated with their phonetic equivalents in
Japanese, and the Japanese “7 ” indicates that the consonant
immediately to the right is to be repeated. The least prob-
able segmentation in the graph is given by abb/7 a/v /.
The log-probabilities in the graph are real values taken from
the third iteration of the training, and here the most probable
segmentation is already by far the most likely.

Nodes in the graph can have multiple in- and out-degree.
Two nodes are combined when the unsegmented part of the
bi-lingual sequence pair is the same for both, giving rise to a
compact, efficient representation.

The FFBS algorithm operates directly on the segmenta-
tion graph, and has two steps. The forward filtering step, cal-
culates for each node in the graph, the probability of the sub-
graph (including the node itself) to the left of the node, back
to the source node. This probability «, is stored in the node

itself (these «’s are shown in Figure 1). This process pro-
ceeds recursively in a depth-first post-order traversal of the
graph, starting at the sink node. Nodes for which the prob-
ability has been calculated are marked as done, ensuring o
gets calculated only once for the node.

The backward sampling step samples a derivation of the
bi-lingual word pair according to the probability distribution
over all possible segmentations. This is done easily using
the « values stored in the graph by the forward filtering pro-
cess. The backward sampling also proceeds recursively from
the sink node. For each incoming arc, the probability of in-
cluding that arc in the sample is given by the product of the
arc probability and the « value at the tail of the arc. This
value is calculated for each incoming arc, and one arc from
the set is sampled according to the probability distribution
over the arcs. The sampling procedure is called recursively
on the tail of the sampled arc until the source node of the
graph is reached. The sequence of arcs traversed defines the
sampled derivation of the bi-lingual pair for the current itera-
tion of the training process, and this sample is in accordance
with the probability distribution over all derivations with re-
spect to the model.

3.2. Sequence-pair Extraction

During the phrase-table generation process of a typical
phrase-based SMT system, GIZA++ is run twice to gener-
ate alignments at the word level, from source-to-target and
from target-to-source. Following this step, the grow-diag-
final-and procedure is used to extract all phrases consistent
with the word alignments arising from the two GIZA++ runs.
When building a phrase-table from the alignment achieved
at final iteration of our Gibbs sampling procedure, we use
a much simpler heuristic that is in the same spirit to de-
rive a larger set of phrases consistent with the initial co-
segmentation. Our experiments show that this is a necessary
step that considerably improves system performance.

The algorithm we use for phrasal extraction from the co-
segmented corpus is as follows: within a single bilingual
word-pair, agglomerate all contiguous bilingual sequence-
pairs in all possible ways, but limit the size of the agglomer-
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Figure 1: A graph representing all possible co-segmentations of the character sequences “abba” in English and “77 /3> in
Japanese. The « labels on the nodes represent the log-probability of subgraph (including the node itself) to the left of the node.
The labels on the arcs are the log-probabilities of bi-lingual phrase pairs used to transition from tail-to-head, and are given by the

model of Equation 6.

ated source and target phrases to match the maximum phrase
length parameter used to train the SMT system (this was set
to 7 in our experiments). This is not strictly necessary, but we
performed this step to keep the phrase-table generated from
our Bayesian segmentation comparable to that generated by
the baseline system.

4. Experiments
4.1. Baseline System

For our experiments we use the phrase-based machine trans-
lation techniques introduced by [5], integrating our models
within a log-linear framework [16]. Word alignment was
performed using GIZA++ [4] and sequence-pair extraction
using the MOSES [5] tools. The decoder used was an in-
house phrase-based machine translation decoder that oper-
ates according to the same principles as the publicly available
MOSES [5] SMT decoder.

In these experiments 5-gram language models built with
Witten-Bell smoothing were used. The system was trained
in a standard manner, using a minimum error-rate training
(MERT) procedure [17] with respect to the BLEU score
on the held-out development data to optimize the log-linear
model weights.

Rama and Gali [18], evaluated several techniques for
sequence-pair extraction for transliteration and found the
grow-diag- final-and heuristic to be the most effective, we
therefore adopt this method in the baseline system our exper-

263

iments.

4.1.1. Decoding Constraints

The experiments reported in this paper were conducted using
a beam width of 100, with no stack thresholding, and a strictly
monotone decoding process.

4.2. Experimental Data

Our training data consisted of 27993 bilingual single word-
pairs that were used in the NEWS2010 workshop transliter-
ation shared task. The development data consisted of 3606
bilingual word-pairs drawn from the same sample. The eval-
uation data consisted of a further 1935 bilingual word-pairs
not contained in the other two data sets. The corpus statistics
for the three corpora are given in Table 1.

Corpus word-pairs Characters

P p En | Ja
Training 27993 188941 | 131275
Development 3606 24066 16651
Evaluation 1935 11863 8199

Table 1: Statistics of the English-Japanese bilingual corpora.

We used the data to train a phrase-based SMT system
to perform transliteration from English to Japanese. We
trained our Dirichlet process model on the same parallel data
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set, and extracted transliteration phrase-tables from the co-
segmentation of the corpus at the final iteration (iteration 30).

4.3. Training Procedure

For the Gibbs sampling, we chose to start the sampling from
a random co-segmentation of the corpus. That is, for each
bilingual word-pair in the corpus, a single co-segmentation
was sampled from a uniform distribution over all possible
co-segmentations of the pair. We believe that it might be ad-
vantageous, and certainly more efficient to start the sampling
from a more intelligent starting point, for example one de-
rived from a pre-processing pass of GIZA++. However, the
training was able to arrive at a good segmentation (by visual
inspection) of the training corpus, its usefulness being borne
out by the experimental results in the next section.

4.4. Evaluation Procedure

The results presented in this paper are given in terms of offi-
cial evaluation metrics used in the NEWS2010 transliteration
generation shared task [19]. In our results, ACC refers to the
top-1 accuracy score, that measures the percentage of the time
the top hypothesis from the system exactly matches the ref-
erence. F-score measures the distance of the best hypothesis
from the reference transliteration; the reader is referred to the
workshop white-paper [19] for more details. For brevity, we
only report our results in terms of ACC and F-score in this pa-
per, but the results in terms of the other NEWS2010 metrics
have the same character.

5. Results
5.1. Training

The convergence of the algorithm during the training proce-
dure is shown in Figure 2 which plots the log-probability of
the sampled derivation at the end of each pass through the
training corpus against iteration. It can be seen from the
graph that the system rapidly improves from the poor initial
segmentation, and thereafter continues to gradually improve.
The log-probability of the initial random co-segmentation
was -1.5e06 and is omitted.

Comparing the segmentations of at various iterations
gives some insight here. At iteration 29, 90% of all the words
in the corpus are bilingually segmented in an identical manner
to those at iteration 30. Since this is a sampling process, the
10% that differ may be explained by different choices made
in the sampling process. At iteration 3, 87.5% of word-pairs
are already segmented in an identical manner to iteration 30.

5.2. Evaluation

Our results on the English-to-Japanese transliteration task are
summarized in Table 2. It is clear from the table that using
sequence-pairs from only the sample at the final iteration of
the training produces gave lower performance than the base-
line system. The phrase-table derived in this way contained
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Figure 2: The evolution of the log-probability of the sampled
derivation with respect to the training iteration.

only 3372 sequence-pairs as opposed to over 140,000 in the
phrase-table extracted from the GIZA++ alignments. More-
over these sequence-pairs were very short compared to those
in from the baseline system’s phrase-table: approximately 3
characters in both source and target on average, compared to
around 5 characters for the baseline system.

When a phrase-table built from agglomerations of the
same set of sequence-pairs was used, a much larger phrase-
table of around 100,000 phrases resulted, with sequence-pairs
that are comparable in size to those of the baseline, around 5
characters. On the transliteration task, this phrase-table gave
an improvement of approximately 1% in ACC over the base-
line system, from a phrase-table that was about 30% smaller
in size. Moreover, since the sequence-pairs are concatena-
tions of 3372 component sequence-pairs, this model could
be stored very compactly if necessary. Further gains were
obtained by interpolating the agglomerated model together
with the baseline model. We believe this gain may be due to
the effect of smoothing.

Our experiments were designed to favor the baseline
model since the system was tuned using the MERT procedure
with its own phrase-table. It is possible that our proposed sys-
tem would have obtained a higher score if tuned with its own
phrase-table, however we chose not to as this would have in-
troduced additional variance from the differences in the two
MERT search processes into the results. In a second exper-
iment we collected counts for the sequence-pairs over mul-
tiple iterations of the training process: from iteration 5 (the
burn-in) to the final iteration. This resulted in a 37% larger
phrase-table, but surprisingly did not realize any notable im-
provement in performance.

It is interesting to note that the system’s performance was
improved dramatically simply by grouping the phrases into
larger units. This highlights one of the advantages of the
phrase-based translation approach. The agglomerated model,
because of the way it was constructed, is not able to gen-
erate anything the simpler model cannot, but when larger
sequence-pairs are used to build the target sequence the char-
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Phrase Extraction Model ACC | F-score Phrase-tal?le Avg. Phrase Length
Entries En | Ja
GIZA++ and grow-diag-final-and 0.313 0.745 143382 541 4.80
Bayesian Segmentation 0.278 0.726 3372 2.60 2.75
Bayesian Segmentation (+agglomerated) | 0.323 0.748 102507 5.54 4.83
Bayesian Segmentation (+integrated) 0.329 0.752 164258 5.46 4.81

Table 2: The experimental results for the three systems together with some statistics of their phrase-tables. Here +agglomer-
ated means the sequence-pairs were extracted by agglomeration from a single sample at the end of the training. In +integrated
the phrase-tables from the baseline system and the agglomerated system were linearly interpolated with equal weights. Differ-
ences between systems were all found to be significant by paired t-testing at a level of 0.05, except for the ACC scores for the

agglomerated and integrated systems.

acters in the phrase carry with them the implicit context of
the other characters in the phrase, all of which have occurred
together in the same context in the training corpus. In the
model with the unagglomerated sequence-pairs, this role is
performed mainly by the language model. In spite of the fact
that we used a 5-gram language model the system clearly ben-
efited from a model that contained longer sequence-pairs as
the basic translation unit.

5.3. Decoding Consistency

We ran an experiment to investigate the reasons for the im-
provements in system performance. Our hypothesis was that
the Bayesian system had produced a phrase table that led to
a more consistent decoding process. This was based on the
belief that the fact that the Dirichlet process model strongly
encourages reuse of the bilingual sequence-pairs it discov-
ers. This should result in a more compact phrase-table, and
should entail that similar words in the corpus are likely to be
decoded in more homogenous fashion. To test the hypoth-
esis we modified the machine translation decoder to count
the number of types of bilingual sequence-pair used to de-
code the evaluation data, and re-ran the English-Japanese
transliteration experiment that showed the largest gain in per-
formance. We found that the decoding process that used
the phrase-table generated from our Bayesian model (with
agglomerated sequence-pairs) used a total of 3496 unique
sequence-pairs, whereas decoding using the phrase-table ex-
tracted using GIZA++ and grow-diag-final-and required a to-
tal of 3970 phrase pairs during the decoding process, sup-
porting our hypothesis. The 3496 sequence-pairs from the
Bayesian model’s phrase-table, could be further analysed into
1289 component bilingual pairs that were present in the seg-
mentation in the sample taken at the end of the training pro-
cess.

6. Conclusion

In this paper we have presented a novel Bayesian bilingual
co-segmentation scheme and applied it to the task of phrase-
table generation for transliteration by phrase-based statistical
machine translation. Traditional models of phrasal alignment
rely on maximum likelihood training coupled with the EM
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algorithm, but have serious issues with overfitting the train-
ing data. Because of these issues, alignment is typically per-
formed in a one-to-many manner from source-to-target and
from target-to-source and the phrase extraction process pro-
ceeds heuristically from an alignment table. Our approach
offers the ability to align the training data in a many-to-many
fashion directly using Bayesian techniques that offer a simple
yet elegant solution to the issues inherent in maximum likeli-
hood training. In addition, our approach is symmetrical with
respect to source and target, and also with respect to the word
order of the corpus.

We investigated the quality of the bilingual phrasal
alignment achievable with unsupervised Bayesian co-
segmentation, and designed experiments to compare directly
to a standard GIZA++/grow-diag-final-and phrase extraction
procedure by constructing a phrase-table from samples aris-
ing from the Gibbs sampling training procedure. Our exper-
iments show that the Bayesian approach is able to produce
a smaller phrase-table that can offer comparable or higher
transliteration performance than the baseline system.

Furthermore, our technique offers other benefits: one ex-
ample being that it provides a full co-segmentation of the
training corpus at the end of training which can be used to
directly train a joint sequence model. This contextual infor-
mation is a key feature in joint sequence transliteration mod-
els such as [6], and is currently missing from the phrase-based
SMT-based transliteration systems. Another virtue of our ap-
proach stems from the fact that the Dirichlet process model is
able to assign a probability to any bilingual word pair. We be-
lieve this type of model in has considerable potential utility in
transliteration mining and corpus filtering, since it provides a
principled way of scoring any potential transliteration candi-
date.

In future research we would like to investigate the effect
of introducing a joint sequence model feature into a phrase-
based SMT-based transliteration system. We also plan to im-
prove the underlying Dirichlet process model in order to bet-
ter model the data, moving to higher-order and hierarchical
models.
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