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Abstract

Discriminative training methods have re-
cently led to significant advances in the
state of the art of machine translation
(MT). Another promising trend is the in-
corporation of syntactic information into
MT systems. Combining these trends is
difficult for reasons of system complex-
ity and computational complexity. The
present study makes progress towards
a syntax-aware MT system whose ev-
ery component is trained discriminatively.
Our main innovation is an approach to
discriminative learning that is computa-
tionally efficient enough for large statis-
tical MT systems, yet whose accuracy
on translation sub-tasks is near the state
of the art. Our source code is down-
loadable from http://nlp.cs.nyu.
edu/GenPar/.

1 Introduction

Discriminative training methods have recently led to
significant advances in the state of the art of ma-
chine translation (MT). Another promising trend is
the incorporation of syntactic information into MT
systems. Combining these trends is difficult for rea-
sons of system complexity and computational com-
plexity. The present study makes progress towards a
syntax-aware MT system whose every component is
trained discriminatively. Our main innovation is an
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approach to discriminative learning that is computa-
tionally efficient enough for large statistical MT sys-
tems, yet whose accuracy on translation sub-tasks is
near the state of the art. The core of our proposal is
described in Section 2, and evaluated in Section 3.

Several studies have explored discriminative
training for machine translation, following the
method of Och and Ney (2002). Several authors
have even applied this method to syntax-aware sys-
tems (Chiang, 2005; Quirk et al., 2005). However,
Och’s method applies discriminative training only
to a handful of meta-parameters that are used to
combine information from a variety of sub-models.
The sub-models may or may not be optimized for
the same objective as the meta-parameters. On a
task like machine translation of common languages,
where training data is abundant, a more elegant and
more accurate system might be obtained by training
all parts of the system discriminatively (Ng and Jor-
dan, 2002). Foster (2000) built such a system, but
could not fully exploit the benefits of discriminative
training for lack of a suitable regularization scheme.

2 Training Method

2.1 The Training Set

Predicting a target tree given a source tree is equiv-
alent to predicting a synchronous tree (“bitree”) that
is consistent with the source tree. Our method for
training tree transducers was to train an inference
engine to predict bitrees. Our method for predicting
bitrees is to make a sequence of multiclass classifi-
cation decisions called inferences. Each inference
predicts an unstructured part of the eventual bitree.
Thus, to train a model for predicting bitrees, it is
sufficient to train it to predict correct inferences.
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To generate training examples for predicting cor-
rect inferences, each training bitree t is decomposed
into a partially-ordered set (“poset”) of inferences,
which jointly predict t and no other bitree. Next, a
completely ordered sequence of correct inferences
is chosen randomly, among all complete orderings
that are consistent with the poset. All the inferences
that can possibly follow each prefix of the correct
sequence become part of the training set. All but
one of the inferences generated for each prefix will
be incorrect. An advantage of this method of gen-
erating training examples is that it does not require
a working inference engine and can be run prior to
any training. A disadvantage of this approach is that
it does not teach the model to recover from mistakes.

Our approach to training multiclass classifiers is
to decompose each multiclass training inference into
a set of training examples of binary classification de-
cisions, all but one of which are negative examples.
For example, one binary decision might be about
whether a given source word should translate to a
given target word. Another might be whether two
constituents should switch order in translation. Af-
ter the decomposition from multiclass to binary, the
training set I consists of training examples i, where
each i is a tuple 〈X(i), y(i)〉. X(i) is a feature vec-
tor describing i, with each element in {0, 1}. We
will use Xf (i) to refer to the element of X(i) that
pertains to feature f. y(i) = +1 if i is correct, and
y(i) = −1 if not.

2.2 Objective Function

The training algorithm induces a hypothesis hΘ(i),
which is a real-valued example scoring function, pa-
rameterized by a real vector Θ. Θ has one entry for
each possible feature f . In the present work, hΘ is a
linear model:

hΘ(i) = Θ ·X(i) =
∑

f

Θf ·Xf (i) (1)

The sign of hΘ(i) predicts the y-value of i and the
magnitude gives the confidence in this prediction.

The training algorithm adjusts Θ to minimize the
objective function, which is the expected risk RΘ

(I) over training set I:

RΘ(I) = LΘ(I) + λ · ΩΘ (2)

LΘ above is the loss function and ΩΘ is the regu-
larization term, which penalizes complex models to
reduce overfitting and generalization error. λ is a pa-
rameter that controls the strength of the regularizer.

In principle, LΘ can be any loss function, but in
the present work we use the log-loss (e.g., Collins et
al. (2002)). Let the margin of inference i under the
current model be

µΘ(i) = y(i) · hΘ(i). (3)

Then the log-loss of i is

σΘ(i) = ln(1 + exp(−µΘ(i))) (4)

and the loss of a set of inferences is just the sum of
their individual losses:

LΘ(I) =
∑

i∈I

σΘ(i) (5)

We also use `1 regularization:

ΩΘ =
∑

f

|Θf |. (6)

This choice of objective RΘ was motivated by Ng
(2004), who suggested that, given a learning setting
where the number of irrelevant features is exponen-
tial in the number of training examples, we can still
learn effectively by minimizing the `1-regularized
log-loss. On the other hand, Ng (2004) suggested
that the following algorithms will overfit in this set-
ting: unregularized logistic regression, logistic re-
gression with an `2 penalty (i.e. a Gaussian prior),
SVMs using most kernels, multilayer neural nets
trained by back-propagation, and the perceptron al-
gorithm. This list includes most of the discrimina-
tive learning algorithms commonly used in NLP.

Learning in an exponentially-sized feature space
is the very setting we have in mind. It is time-
consuming and error-prone to do feature selection
by hand for problems as complex as MT. We pre-
fer to start with a very large set of all the features
that we can think of, and let the learning algorithm
find the useful ones. A priori, we define only a set
A of simple atomic features (given in Section 3).
The learning algorithm then induces compound fea-
tures, each of which is a conjunction of possibly
negated atomic features. Each atomic feature can
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procedure TRAIN(I)
ensemble← ∅
λ←∞
repeat

t← tree with one (root) node
GrowTree(λ, t, I)
append t to ensemble
measure tuning set loss

until tuning set loss stops decreasing

procedure GROWTREE(λ, t, I)
while the root of t cannot be split do

decay regularization parameter λ

while some leaf in t can be split do
split the leaf to maximize gain

percolate every i ∈ I to a leaf node
for each leaf n in t do

update Θϕ(n) to minimize RΘ

Figure 1: Outline of training algorithm.

have one of three values (yes/no/don’t care), so the
size of the compound feature space is 3|A|, exponen-
tial in the number of atomic features. In our experi-
ments, it was also exponential in the number of train-
ing examples, because in our experiments |A| > |I|.

2.3 Boosting `1-Regularized Decision Trees

We use an ensemble of confidence-rated decision
trees (Schapire and Singer, 1999) to represent hΘ.1

The path from the root to a node n in a decision
tree corresponds to a compound feature f , and we
write ϕ(n) = f . Decision trees partition the exam-
ple space so that each example i falls into exactly
one leaf of a decision tree. An example i percolates
down to node n iff Xa = 1 for all atomic features
a such that either a or ¬a is part of ϕ(n). To score
an example i using a decision tree, we percolate the
example’s features X(i) down to a leaf n and return
the confidence Θϕ(n). The score hΘ(i) given to an
example i by the whole ensemble is the sum of the
confidences returned by the trees in the ensemble.

Figure 1 presents our training algorithm. At the
beginning of training, the ensemble is empty, Θ =

1Turian and Melamed (2005) found that training progressed
more quickly and resulted in more accurate classifiers when us-
ing full decision trees rather than decision stumps.

0, and the regularization hyper-parameter λ is set to
∞. The main loop runs until no further accuracy im-
provement can be found on a development data set.
Each iteration of the main loop initializes a trivial
decision tree, consisting of only a root node. It then
calls the GROWTREE procedure, which can grow the
trivial tree into a non-trivial one. The tree is then ap-
pended to the ensemble.

Each invocation of GROWTREE starts by decay-
ing λ until it is low enough to permit the root of t to
be split. The purpose of this step is to optimize the
hyper-parameter λ concurrently with the rest of the
model parameters, in contrast to the common prac-
tice of optimizing such hyper-parameters indepen-
dently and/or heuristically. After λ gets low enough,
GROWTREE chooses some compound features that
have high magnitude gradient with respect to the ob-
jective function (see below). The result is a new de-
cision tree whose leaves represent those compound
features.2 After the tree is built, GROWTREE perco-
lates the training examples down to their appropriate
leaf nodes. It then chooses for each leaf node n the
parameter Θϕ(n) that minimizes the objective over
the examples in that leaf. A convenient property of
decision trees is that each example will fall into ex-
actly one leaf of a given tree. Therefore, the leaf
confidences can be directly optimized independently
of each other using a line search over the objective.
In this manner, compound feature selection is per-
formed incrementally during training, as opposed to
a priori.

Our strategy for feature selection is a variant of
steepest descent (Perkins et al., 2003). A natural cri-
terion for choosing features is the degree to which
changing a feature parameter Θf can change the ob-
jective, i.e. the absolute value of the gradient of the
objective with respect to the parameter. Therefore,
we define the gain so that it is never negative:

GΘ(I; f) = max

(
0,

∣∣∣∣
∂LΘ(I)

∂Θf

∣∣∣∣− λ

)
. (7)

To compute the gain, we note that

∂LΘ(I)

∂Θf
=

∑

i∈I

∂σΘ(i)

∂Θf
=

∑

i∈I

∂σΘ(i)

∂µΘ(i)
·
∂µΘ(i)

∂Θf
.

(8)

2A compound feature can appear in more than one tree.
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The boosting literature usually refers to the negative
of the first factor above as the weight of an example.
It can be computed by differentiating Equation 4:

wΘ(i) = −
∂σΘ(i)

∂µΘ(i)
=

1

1 + exp(µΘ(i))
(9)

We also have from Equations 1 and 3 that

∂µΘ(i)

∂Θf
= y(i) ·Xf (i) (10)

Recall that Xf (i) is either 0 or 1. Combining Equa-
tions 8–10 gives:

∂LΘ(I)

∂Θf

= −
∑

i∈I
Xf (i)=1

y(i) · wΘ(i) (11)

We grow each decision tree by recursively split-
ting each node by a feature that will allow us to
maximize the gain in Equation 7. For node n with
ϕ(n) = f , the best atomic splitting feature is

â = arg max
a∈A

[GΘ(I; f ∧ a) + GΘ(I; f ∧ ¬a)]

(12)
After finding â, we decide whether n should be split.
If GΘ(I; f ∧ â)+GΘ(I; f ∧¬â) > GΘ(I; f) then n

spawns child nodes n1 and n2, with ϕ(n1) = f ∧ â

and ϕ(n2) = f ∧ ¬â. Otherwise, the current tree
is likely to reduce loss more quickly if n were left
unsplit, so n becomes a leaf node of the decision
tree and Θϕ(n) becomes one of the values to be op-
timized during the parameter update step. To our
knowledge, this is a novel way to use regularization
to control the depth of a decision tree. Using `1 reg-
ularization, in particular, keeps the trees relatively
small and the ensembles relatively sparse. If no root
node split has positive gain, then training has con-
verged for the current hyper-parameter λ.

3 Experiments

3.1 Data

The data for our experiments came from the En-
glish and French components of the EuroParl cor-
pus (Koehn, 2005). From this corpus, we extracted
sentence pairs where both sentences had between 5
and 40 words, and where the ratio of their lengths
was no more than 2:1. We then extracted disjoint

sent. English words French words
pairs types tokens types tokens

training1 10 11 210 14 232
training2 100 29 2100 38 2300

tuning 1 3.5 21 4.2 23
devel 1 3.5 21 4.1 23
test 1 3.5 21 4.1 23

Table 1: Data sizes in 000’s.

training, tuning, development, and test sets. The tun-
ing, development, and test sets were 1000 sentence
pairs each. For some experiments we used 10,000
sentence pairs of training data; for others we used
100,000. Descriptive statistics for these corpora are
in Table 1.

We parsed the English half of the training, tun-
ing, development, and test bitexts using Dan Bikel’s
parser (Bikel, 2004), which was trained on the Penn
treebank (Marcus et al., 1993). On each of our
two training sets, we induced word alignments us-
ing the default configuration of GIZA++ (Och and
Ney, 2003). The training set word alignments and
English parse trees were fed into the default French-
English hierarchical alignment algorithm distributed
with the GenPar system (Burbank et al., 2005), to
produce binarized tree alignments.

3.2 Word Transduction

Our first set of experiments evaluated our approach
on the task of translating individual words from En-
glish to French. The input was a single English
word, which we’ll call the “focus” word, along with
a vector of features (described below). The output
was a single French word, possibly NULL. The pro-
posed translation was compared to a “gold standard”
translation.

The gold-standard word pairs that we used for
this task were extracted from the tree alignments de-
scribed above. Thus, the gold standard was a set of
GIZA++ Viterbi word alignments filtered by a tree
cohesion constraint. Regardless of whether they are
created manually or automatically, word alignments
are known to be highly unreliable. This property of
the data imposed a very low artificial ceiling on all
of our results, but it did not significantly interfere
with our goal of controlled experiments to compare
learning methods. To keep our measurements con-
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sistent across different training data sizes, the word
alignments used for testing were the ones induced by
GIZA++ when trained on the larger training set. The
number of trials was equal to the number of source
words for which GIZA++ predicts an alignment.

In contrast to Vickrey et al. (2005), we did not
allow multi-word “phrases” as possible translations,
because we do not yet understand how methods for
compiling such phrases interact with our discrimi-
native training methods and our objective function.
In future work, we intend to explore discriminative
phrase induction techniques. In the present study,
phrases might have raised our absolute scores, but
they would have confounded our understanding of
the results. Our experiment design also differs from
Vickrey et al. (2005) in that we trained classifiers for
all words in the training data.3 There were 161K
word predictions in the smaller (10,000 sentence
pairs) training set, 1866K in the larger training set,
17.8K predictions in the tuning set, 14.2K predic-
tions in the development set, and 17.5K predictions
in the test set.

Using the smaller training set, and guessing
the most frequent translation of each source word
achieves a baseline accuracy of 47.54% on the de-
velopment set. With this baseline, we compared
three methods for training word transducers on the
word alignments described above. The first was the
method described in Section 2. The second was a
method similar to Vickrey et al. (2005). Both of
these methods use logistic regression. Their main
difference is that the second method used `2 reg-
ularization, but the first method used `1 The third
method was LaSVM (Bordes et al., 2005), an online
SVM algorithm designed for large datasets.

For each training method, we experimented with
several kinds of features, which we call “win-
dow,” “co-occurrence,” and “dependency.” Window
features included source words and part-of-speech
(POS) tags within a 2-word window around the fo-
cus word, along with their relative positions (from
-2 to +2). Co-occurrence features included all words
and POS tags from the whole source sentence, with-
out position information. Dependency features were
compiled from the automatically generated English

3David Vickrey (p.c.) informed us that Vickrey et al. (2005)
omitted punctuation and function words, which are the most
difficult in this task.

W W+D W+C W+D+C

10,000 training sentences — baseline = 47.54

`2 54.09 54.33 52.36 52.88
`1 53.96 54.13 53.29 53.75
LaSVM 53.38 51.93 49.13 50.71
pruned `2 47.37 46.01 46.68 45.01
`1 size 54.1K 41.7K 37.8K 38.7K
`2 size 1.67M 2.51M 5.63M 6.47M
pruned `2 size 54.1K 41.7K 37.8K 38.7K

100,000 training sentences — baseline = 51.94

`1 62.00 62.42 61.98 62.40
`1 size 736K 703K 316K 322K

Table 2: Percent accuracy on the development set
and sizes of word-to-word classifiers trained on 10K
or 100K sentence pairs. The feature sets used were
(W)indow, (D)ependency, and (C)o-occurrence. `1

size is the number of compound feature types.

parse trees. The dependency features of each focus
word were:

• the label of its maximal projection (i.e. the
highest node that has the focus word as its lex-
ical head, which might be a leaf, in which case
that label is a POS tag),

• the label and lexical head of the parent of the
maximal projection

• the label and lexical head of all dependents of
the maximal projection

• all the labels of all head-children (recursively)
of the maximal projection

The window features were present in all experi-
mental conditions. The presence/absence of co-
occurrence and dependency features yielded 4 “con-
figurations.”

Using each of these configurations, each training
method produced a confidence-rating binary classi-
fier for each translation of each English word seen in
the training data. In all cases, the test procedure was
to choose the French word predicted with the high-
est confidence. All methods, including the baseline,
predicted NULL for source words that were not seen
in training data.

Table 2 shows the size and accuracy of all three
methods on the development set, after training on
10,000 sentence pairs, for each of the 4 configura-
tions. The best configurations of the two logistic
regression methods far exceed the baseline, but oth-
erwise they were statistically indistinguishable. The
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accuracy of LaSVM was similar to the regression
methods when using only the window features, but
it was significantly worse with the larger feature sets.

More interesting were the differences in model
sizes. The `2-regularized models were bigger than
the `1-regularized models by two orders of magni-
tude. The `2-regularized models grew in size to ac-
commodate each new feature type. In contrast, the
`1-regularized models decreased in size when given
more useful features, without significantly losing ac-
curacy. This trend was even stronger on the larger
training set, where more of the features were more
reliable.

The size of models produced by LaSVM grew
linearly with the number of examples, because for
source words like “the,” about 90% of the examples
became support vectors. This behavior makes it in-
feasible to scale up LaSVM to significantly larger
data sets, because it would need to compare each
new example to all support vectors, resulting in near-
quadratic run-time complexity.

To scale up to 100,000 sentence pairs of training
data with just the window features, the `2 classi-
fiers would need about 25 billion parameters, which
could not fit in the memory of our computers. To
make them fit, we could set all but the heaviest fea-
ture weights to zero. We tried this on 10,000 sen-
tence pairs of training data. The number of features
allowed to remain active in each `2 classifier was the
number of active features in the `1 classifier. Table 2
shows the accuracy of these “pruned” `2-regularized
classifiers on the development set, when trained on
10,000 sentence pairs. With the playing field lev-
eled, the `1 classifiers were far more effective.

In preliminary experiments, we also tried
perceptron-style updates, as suggested by Tillmann
and Zhang (2005). However, for reasons given by
Tewari and Bartlett (2005), the high-entropy deci-
sions involved in our structured prediction setting
often prevented convergence to useful classifiers.
Likewise, C. Tillmann informed us (p.c.) that, to
ensure convergence, he had to choose features very
carefully even for his finite-state MT system.

Regularization schemes that don’t produce sparse
representations seem unsuitable for problems on the
scale of machine translation. For this reason, we
used only `1 regularized log-loss for the rest of our
experiments. Table 2 shows the accuracy and model

size of the `1-regularized classifier on the develop-
ment set, when trained on 100,000 sentence pairs,
using each of the 4 configurations. Our classifier far
exceeded the baseline. The test set results for the
best models (window + dependency features) were
quite close to those on the development set: 54.64%
with the smaller training set, and 62.88% with the
larger.

3.3 Bag Transduction

The word-to-word translation task is a good starting
point, but any conclusions that we might draw from
it are inherently biased by the algorithm used to map
source words to target words in the test data. Our
next set of experiments was on a task with more ex-
ternal validity – predict a translation for each source
word in the test data, regardless of whether GIZA++
predicted an alignment for it. The difficulty with this
task, of course, is that we have no deterministic word
alignment to use as a gold standard. Our solution
was to pool the word translations in each source sen-
tence and compare them to the bag of words in the
target sentence. We still predicted exactly one trans-
lation per source word, and that translation could be
NULL. Thus, the number of target words predicted
for each source sentence was less than or equal to
the number of words in that source sentence. The
evaluation measures for this experiment were preci-
sion, recall, and F-measure, with respect to the bag
of words in the test target sentence.

We compared the 4 configurations of our `1-
regularized classifiers on this task to the most-
frequent-translation baseline. We also evaluated a
mixture model, where a classifier for each source
word was chosen from the best one of the 4 config-
urations, based on that configuration’s accuracy on
that source word in the tuning data. As an additional
gauge of external validity, we performed the same
task using the best publicly available machine trans-
lation system (Koehn et al., 2003). This comparison
was enlightening but necessarily unfair. As men-
tioned above, our long-term goal is to build a system
whose every component is discriminatively trained
to optimize the objective function. We did not want
to confuse our study with heuristic methods, so we
avoided “phrase” induction, word class induction,
non-discriminatively trained target language mod-
els, etc. On the other hand, modern MT systems
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P R F
training on 10,000 sentence pairs

baseline 48.09 41.26 44.42
window only 53.93 42.81 47.73
dependency 53.97 42.72 47.69
co-occurrence 53.31 42.45 47.26
co-oc + dep 53.58 42.67 47.50
mixture model 54.05 42.95 47.87

training on 100,000 sentence pairs
baseline 51.91 40.79 45.68
window only 58.79 44.26 50.50
dependency 59.12 44.57 50.82
co-occurrence 59.06 44.36 50.67
co-oc + dep 59.19 44.60 50.87
mixture model 59.03 44.55 50.78
Pharaoh w/o LM 32.20 54.62 40.51
Pharaoh with LM 56.20 57.49 56.84

1-to-1 upper bound 100.00 86.31 92.65

Table 3: (P)recision, (R)ecall and (F)-measure for
bag transduction of the development set. The dis-
criminative transducers were trained with `1 regu-
larization.

are designed for use with such information sources,
and cannot be fairly evaluated without them. So, we
ran Pharaoh in two configurations. The first used the
default system configuration, with a target language
model trained on the target half of the training data.
The second allowed Pharaoh to use its phrase tables
but without a target language model. This second
configuration allowed us to compare the accuracy of
our classifiers to Pharaoh specifically on the subtask
of MT for which they were designed.

P R F
training on 10,000 sentence pairs

dependency 54.36 42.75 47.86
mixture model 54.27 42.81 47.86

training on 100,000 sentence pairs
co-oc + dep 59.49 44.19 50.71
mixture model 59.62 44.38 50.88
Pharaoh w/o LM 32.55 54.62 40.80
Pharaoh with LM 57.01 57.84 57.45

Table 4: (P)recision, (R)ecall and (F)-measure of
bag transducers on the test set.

The results are in Table 3. The table shows that
our method far exceeds the baseline. Since we pre-
dict only one French target word per English source
word, the recall of our bag transducer was severely
handicapped by the tendency of French sentences to
be longer than their English equivalents. This hand-
icap is reflected in the 1-to-1 upper bound shown in
the table. With a language model, Pharaoh’s recall
exceeded that of our best model by slightly less than
this 13.7% handicap. However, we were surprised to
discover that the bag transducer’s precision was sig-
nificantly higher than Pharaoh’s when they compete
on a level playing field (without a language model).
Table 4 shows the accuracy of the best models on the
test set, where the numbers closely follow those on
the development set.

This result suggests that it might not be necessary
to induce “phrases” on the source side4. After all,
the main benefits of phrases on the source side are in
capturing lexical context and local word reordering
patterns. Our bag transducers capture lexical con-
text in their feature vectors. Word order is irrelevant
for bag transduction (but see the next section). The
only advantage of phrases on this task is in propos-
ing more words on the target side, which eliminates
the 1-to-1 upper bound on recall.

3.4 Tree Transduction

We experimented with a simplistic tree transducer,
which involves only two types of inference. The first
type transduces leaves; the second type transduces
internal nodes. The transduction of leaves is ex-
actly the word-to-word translation task described in
Section 3.2. Leaves that are transduced to NULL are
deterministically erased. Internal nodes are trans-
duced merely by permuting the order of their chil-
dren, where one of the possible permutations it to
retain the original order. This transducer is grossly
inadequate for modeling real bitext (Galley et al.,
2004): It cannot account for many kinds of noise and
for many real translingual phenomena, such as head-
switching and discontinuous constituents, which are
important for accurate MT. It cannot even capture
common phrasal translations such as there is / il y a.
However, it is sufficient for controlled comparison
of learning methods. The learning method will be

4Quirk and Menezes (2006) offer additional evidence for
this hypothesis.

257



the same when we use more sophisticated tree trans-
ducers. Another advantage of this experimental de-
sign is that it uses minimal linguistic cleverness and
is likely to apply to many language pairs, in contrast
to other studies of constituent/dependent reordering
that are more language-specific (Collins et al., 2005;
Xia and McCord, 2004).

To reduce data sparseness, each internal node with
more than two children was binarized, so that the
multiclass permutation classification for the original
node was reduced to a sequence of binary classifica-
tions. This reduction is different from the usual mul-
ticlass reduction to binary: In addition to making the
classifier binary instead of multiclass, the reduction
decomposes the label so that some parts of it can be
predicted before others. For example, without this
reduction, a node with children 〈A,B,C〉 can be
transduced to any of 6 possible permutations, requir-
ing a 6-class classifier. After binarization, the same
6 possible permutations can be obtained by first per-
muting 〈A,B〉, and then permuting the result with
C , or by first permuting 〈B,C〉 and then permuting
the result with A. This reduction eliminates some
of the possible permutations for nodes with four or
more children (Wu, 1997).

Our monolingual parser indicated which node is
the head-child of each internal node. Some addi-
tional permutations were filtered out using this infor-
mation: Two sibling nodes that were not the head-
children of their parent were not allowed to partic-
ipate in a permutation until one of them was per-
muted with the head-child sibling. Thus, if C was
the head-child in the previous example, then 〈A,B〉
could not be permuted first; 〈B,C〉 had to be per-
muted first, before permuting with A.

To make the tree transducer deterministic, we add
a procedure that searches for the tree with minimum
total loss, among all possible output trees:

T̂ = arg min
T∈T

∑

i∈T

l(i) (13)

where T is the set of all possible output trees, i ∈ T

are the inferences used to build the tree T and l(i)
is the loss associated with inference i. We compared
two models of inference loss — one generative and
one discriminative.

The generative model was based on a top-down
tree transducer (Comon et al., 1997) that stochasti-

cally generates the target tree given the source tree.
The generative process starts by generating the tar-
get root given the source root. It then proceeds
top-down, generating every target node conditioned
on its parent and on the corresponding node in the
source tree. Let π be the function that maps every
node to its parent, and let η be the function that maps
every target node to its corresponding source. If we
view the target tree as consisting of nodes n with n0

being the root node, then the probability of the target
tree T is

Pr(T ) = Pr(n0|η(n0)) ·
∏

n6=n0∈T

Pr(n|π(n), η(n))

For the generative model, the loss of an inference i is
the negative logarithm of the probability of the node
n(i) that it infers:

l(i) = − log Pr[n(i)|π(n(i)), η(n(i))]. (14)

We estimated the parameters of this transducer us-
ing the Viterbi approximation of the inside-outside
algorithm described by Graehl and Knight (2004).
Following (Zhang and Gildea, 2005), we lexicalized
the nodes so that their probabilities capture bilexical
dependencies.

The discriminative model was trained using the
method in Section 2, with l(i) = σΘ(i). A sepa-
rate classifier was induced for each possible trans-
lation of each source word seen in training data, to
evaluate candidate transductions of leaf nodes. Ad-
ditional classifiers were induced to confidence-rate
candidate permutations of sibling nodes. Recall that
each permutation involved a head-child node and
one of its siblings. Since our input trees were lex-
icalized, it was easy to determine the lexical head
of both the head-child and the other node participat-
ing in each permutation. Features were then com-
piled separately for each of these words according
to the “window” and “dependency” feature types de-
scribed in Section 3.2. Since the tree was transduced
bottom-up, the word-to-word translation of the lexi-
cal head of any node was already known by the time
it participated in a permutation. So, in addition to
dependents on the source side, there were also fea-
tures to encode their translations. The final kind of
feature used to predict permutations was whole syn-
chronous context-free production rules, in bilexical,
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source transduction exponent 1 exponent 2
parser model P R F P R F

generative generative 51.29 38.30 43.85 22.62 16.90 19.35
generative discriminative 59.89 39.53 47.62 26.94 17.78 21.42

discriminative generative 50.51 37.76 43.21 22.04 16.47 18.85
discriminative discriminative 62.36 39.06 48.04 28.02 17.55 21.59

Pharaoh (w/o LM) 32.19 54.62 40.51 12.37 20.99 15.57

Table 5: (P)recision, (R)ecall, and (F)-measure of transducers using 100,000 sentence pairs of training data.

monolexical, and unlexicalized forms. These kinds
of feature combinations are very difficult to model in
the traditional generative framework. Our hypothe-
sis was that the discriminative approach would be
more accurate, because its evaluation of each infer-
ence could take into account a great variety of infor-
mation in the tree, including its entire yield (string),
not just the information in nearby nodes. In princi-
ple, our step-wise approach to structured inference
is also more flexible than the approach of Taskar et
al. (2004), because we are not limited to objective
functions that can be decomposed along subsets of
the relevant features.

For both models, the search for the optimal tree
was organized by an agenda, as is typically done for
tree inference algorithms. For efficiency, we used a
chart, and pruned items whose score was less than
10−3 times the score of the best item in the same
chart cell. We also pruned items from cells when-
ever the number of items in the same cell exceeded
40. Our entire tree transduction algorithm can be
viewed as translation by parsing Melamed (2004)
where the source side of the output bi-tree was con-
strained by the input (source) tree.

We compared the generative and discriminative
models by reading out the string encoded in their
predicted trees, and comparing that string to the tar-
get sentence in the test corpus. In pilot experiments
we used the BLEU measure commonly used for
such comparisons (Papineni et al., 2002). To our
surprise, BLEU reported unbelievably high accu-
racy for our discriminative transducer, exceeding the
accuracy of Pharaoh even with a language model.
Subsequently, we discovered that BLEU was incor-
rectly inflating our scores by internally re-tokenizing
our French output. This behavior, together with the
growing evidence against using BLEU for syntax-

aware MT (Callison-Burch et al., 2006), convinced
us to use the more transparent precision, recall, and
F-measure, as computed by GTM (Turian et al.,
2003). With the exponent set to 1.0, the F-measure
is essentially the unigram overlap ratio, except it
avoids double-counting. With a higher exponent, the
F-measure accounts for overlap of all n-grams (i.e.
for all values of n), again without double-counting.

During testing, we compared two kinds of in-
put parse trees for each kind of tree transducer.
The first kind was generated by the parser of Bikel
(2004). The second kind was generated by the
parser of Turian and Melamed (2006), which was
trained in a purely discriminative manner using
the method of Section 2. Table 5 shows the re-
sults. The discriminatively-trained transducer far
outperformed the generatively trained transducer
on both precision and recall. In addition, the
discriminatively-trained transducer performed better
when it started with parse trees from a purely dis-
criminative parser. To our knowledge, these are the
first reported results for a syntax-driven SMT system
that makes no use of generative models.

4 Conclusion

We have presented a method for training a syntax-
aware statistical machine translation system in a
fully discriminative manner. The system outper-
forms a generative baseline, despite not using the
standard trick of bootstrapping from a generative
model. We have not yet added all the standard in-
formation sources that are necessary for a state-of-
the-art MT system, but the scalability of our system
suggests that we have overcome the main obstacle
for doing so. Our source code is downloadable from
http://nlp.cs.nyu.edu/GenPar/.
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