
AN LR(k) ERROR DIAGNOSIS AND RECOVERY METHOD

Philippe Charles
IBM T.J . Watson Research Center

P.O . box 704,
Yorktown Heights , N.Y 10598

Abstract

In this paper, a new practical, efficient and
language ... independent syntactic error recov­
ery method for tR(k) parsers is presented.
This method is similar to and builds Upon
the three-level approach oi' Burke�Fisher [1 1] .
However, it is more time- and space-efficient
and fully automatic.

1 . Introduction and Overview

1 . 1 l'h.� Parsing Framework
An LR parsing configuration has two components:
a state stack and the remaining input tokens. This
method assumes a framework in which the parser
maintains a state stack, denoted stack, and a fixed
number of input symbols . These symbols include
the current token or lookahead, denoted curtok, the
token immediately preceding the current token, de­
noted prevtok , and an input buffer 1 denoted b·uff er,
containing a predetermined number of the input tokens following curtok .. A number of attributes
are associated with each input symbol such as its
class, its location within the input source, its char­
acter string representation, · etc . . . An input sym­
bol together with all its attributes is referred to as
a token element. Each state q in the state stack
is also associated with certain attributes includ­
ing the grammar symbol that caused the transition
into- q (called the in_symbol of q) , and the location
of the first input token on which an action was ex­
ecuted on q .

An LR parsing configuration may be repre­
sented by a string of the form:

The sequence to the left of the vertical bar is the
content of the state stack , with qm at the top ;
q1 . . . qm is a valid sequence of states in the LR
parsing machine. The sequence to the right of the
vertical bar is the unexpended input . Each ele­
ment ti represents the class of a corresponding in­
put symbol . The symbol t 1 represents the class of

89

the current token , t2 represents the class of the suc­
cessor of cttrtok , etc. The symbol t o which is not
shown above represents the class of prevtok.

For simplicity, it will be assumed that the
grammar used to construct the _ .parser is LR(l) ,
but this method is applicable to all forms of LR(k)
parsers.

1 .. 2 Error Recovery
A parsing configuration in which no legr:t:l act. ion
is possible is called an error configuration . . When
an error configuration is reached , the error recov­
ery procedure is invoked. Its. role is to- adjust the
configuration so as to allow the parser to advance
a minimum predetermined distance .. in the input
stream, usually two or thr�e tokens past th� repair
point . The token on which the error is detect�d
is referred to as the error token and the state m
which the error is detected is called the error state.

Three kinds of recovery strategies are used .
They are:

• Primary recov-ery. A singfe-.symbol modifka­
tion of the source · text ;. i .e . , the insertion of a
single symbol into the inp�t stream, the dele­
tion of an input token , the su:bsti�ution of a
grammat symbol for an input token �or_ the
merging of two adjacent tokens to form a smgle
one. Previous authors [7] [1 1 J have used a tnorc
restricted form of pri'mary recovery inv·olving
only terminal symbols as repair candidates.

• Secondary. rewvery. Deletion of as small a se­
quence of tokens as- possible in tf-1.e vicinity of
the error token or replacement or such a se�
quence with a nontennfoal symbol. This ap:..

proach can be viewed as an autotllatic gener­
alization of the error productions· method de­
scribed in [3].

• Scope recovery. A scope is a syntactically
nested structure such as a parenthesized ex­
pression , a block or a procedure . In scope re­
covery, the strategy is to recover by inserting
relevant symbols into the text to complete the
construction of scopes that are incompletely
specified .

1 . program TEST (INPUT , OUTPUT) ;
2 . var X , Y : array [] of integer ;

•Error : index_list expected after . . .
3 . begn

•Error : misspelling of BEGIN
4. 1 : X : = y ,

•Error : ; expected instead of this token
5 . if x == b then begin

•Error : Unexpected symbol ignored
6 . go t o 1 ;

<--->
•Error : Symbols merged to form GOTO

7 . a : = ((b + c)

•Error : 1 1) 11 inserted to complete phrase ·
•Error : " END" inserted to complete . . .

8 . end .

Figure 1 : Primary phase recoveries

1 . program P (INPUT , OUTPUT) ;
2 . procedure ? (X : INTEGER) : integer ;

<------>
•Error : Unexpected input discarded

3 . · begin
4 . end ;
5 ; begin
6 . if count [listdata [sub] .- O then

•Error : "] " inserted to complete phrase
•Error : invalid relat ional_operator

7 . a : = ((b + c]] ;

<>
•Error : 1 1) 1 1 inserted to complete phrase
•Error : 1 1) 11 inserted to complete phrase
•Error : Unexpected input discarded

8 . end .

Figure 2 : Secondary phase recoveries

90

This error recovery sch��� consists of two
phases called Primary phase and Secondary phase. In the Primary phase, an attempt is made to re­
cover with minimal modification of the remaining
input stream. Figure 1 shows some examples of
primary phase recoveries. In the Secondary phase,
more radical approaches involving removal of some
left con text (state stack) information as well as
multiple deletion of tokens from the input stream
(right context) are attempted. Figure 2 shows some
examples of secondary phase recoveries.

1 . 3 Error Detection ·

A canonical LR(k) parser h� the capability of
detecting an error at the earliest possible point .
However, because of their size, canonical LR(k)
parsers are seldom used. Instead, variants such as
LALR(k) and SLR(k) (usually k = l) , invented
by DeRemer [11 [2] are used . These LR variants,
in part , solve the space problem by always using
the underlying LR(O) au.tomatoil . However, cer­
tain states in these parsers usually contain reduce
actions that may be illegal , depending on the ac­
tual context . Illegal reduce actions do not cause
the resulting parser to accept illegal inputs, but

· they -prevent it from always detecting errors at the
earlier possible point . This problem is usually com­
pounded by a space-saving technique known as de­
fault reductions which is often· used in compress­
ing parsing tables. To apply the default reduc­
tions technique, the most common rule by which
the parser can · reduce in each state is chosen as
a default action for that state and all the reduce
actions by that rule are removed from the parsing
table . Another undesirable side effect · of using de­
fault reductions is that it is no longer possible to
compute, from the parsing table , the set of termi­
nal symbols on which valid actions are defined in a
given state. The inability to detect errors as soon
as possible and to obtain a set of viable terminal
candidates for a given state is very problematic for
error recovery.

Furthermore, even with a canonical LR(k)
parser, the ability to detect an error at the ear­
liest possible point only guarantees that the pre­
fix parsed up to that point is correct . Therefore,
it is possible that the token on · ·which an error is
detected i� not the one that is actually in , error.
Consider the following Pascal decl_aration :

FUNCTION F (X : TINY , Y : BIG , Z : REAL) ; In this example, it is very difficult to deduce
the actual intention of the programmer, but a sim­
ple substitution of the keyword "PROCEDURE" for

the keyword "FUNCTION" would solve the problem. However, the error is not detected-· until the semi­colon (;) is encountered or 15 tokens later. In [1 1] , Burke and Fisher introduced a deferred parsing technique where two parsers are run con­currently : one that parses normally and another that is kept at a fixed distance (measured in termi­nal symbols) back. When an error is encountered, error recovery is attempted at all points between the two parsers. This approach avoids the prema­ture reductions problem and solves, in part , the problem of late detection of errors . However, the overhead of the two parsers penalizes correct pro­grams. In this method, a new LR driver routine called deferred driver is introduced. This new driver can effectively detect an error at the earliest possible point even if the parser contains default reductions . It can also be adapted to defer parsing actions on a fixed number of tokens with very little slow-down on correct programs. To achieve this goal , an ad­ditional state stack is required for each deferred symbol . Thus, in practice, one must restrict the number of symbols on which actions are deferred. The method also relies on having two map­pings: Lsymbols and nLsymbols , statically con­structed, which yield for each state, a subset of the terminal and nonterminal symbols , respectively, on which an action is defined in the state in question. These subsets are the smallest subsets of viable er­ror recovery candidates for each state . Their com­putation will be discussed later . The remainder of this paper is organized as follows: • detailed description of the new driver • presentation of various recovery techniques • discussion of how to apply these recovery tech­niques • concluding remarks
2 The Driver

An important improvement that can be made to an LR(k) automaton is the removal of LR(O) reduce states. An LR(0) reduce state is a state that con­tains only reduce actions by a particular rule . If a representation of the parsing tables with default ac­tion is used, then the parser will never consult the lookahead symbol when it is in one of these states. Thus, such states may be completely removed from the parser by introducing a new parsing action: read-reduce. The read-reduce action comprises a read transition followed by a reduction . A read­reduce action is referred to as a shift-reduce when

91

l e t #x denote the number of elements in a # sequence x. rhs and l hs are maps that yield the # size of the right-hand side and left-hand side # symbol of a given rule, respectively. ACTION # and GOTO are the terminal and nonterminal # parsing functions, respectively.
I. function lookahead_action(stk, tok, pos) ; 2 . { pos := #stk.state ; 3 . top := pos - 1 ; 4. act := ACTION(stk .state[pos] . tok) ; 5 . while act is a reduce action do 6. { do
7 .

8 .

9 . 10 .
1 1 . 12 .
13 .

14 .

15 .

16 . }

{ top := top - rhs[act] + 1 ;
if top > pos then s := tstk [top] ; else s := stk.state[top] ; act := GOTO_(s , l hs[act]) ; } while act i s a goto-reduce action; tstk[top+l] := act ; act := ACTION(act , tok) ; pos := m i n(pos, top) ;

17 . return act ;
18 . }

Figure 3 : lookahead_action function
the symbol X in question is a terminal symbol and as a goto-reduce action when X is a nonterminal . The removal of LR(0) _reduce states from an
LR automaton does not cause premature reduc­tions. Moreover, the execution of a read-reduce action is always followed by a sequenc� of zero or more goto-reduce actions, and finally, by a goto action . All of these actions may also be executed without deferral . When the parser executes a reduce action in a non-LR(0) reduce state, that action is also followed by goto-reduce actions and a final goto action . If the reduce action in question is an illegal action, executed by default , then all the associated goto­reduce and goto actions following it are also ille­gal moves. To complicate matters, the · goto action may be followed by a sequence of reduce actions on empty rules, each followed by its associated goto­reduces and goto action . In such a case, all actions induced by the lookahead symbol must be invali­dated and the original configuration of the parser (prior to the initial reduction) must be restored . One way to achieve this goal is as follows. When a reduce action is encountered , make a copy of the state stack into a temporary stack and sim­ulate the parser using the temporary stack until either a shift , shift-reduce or error action is corn-

stk .state := [start_state] ;
loop do
{ ppos := O ; pstk := [] ;

}

npos := O ; nstk := [] ;
stk . loc[#stk.state] := curtok . loc;
tstk := stk ;
act := lookahead_action(tstk , t1 , pos) ;
while act # error and act # accept do
{ nstk(npos+l . .] := tstk[npos+l . .] ;

stk . loc[pos+l . .] :=
[curtok . loc : i i n (pos+l . .#nstk]] ;

if act is a shift-reduce action then
{ top := #nstk ;

}

do
{ top := top - rhs[act] + 1 ;

act : = GOTO(nstk[top] , l hs[act]) ;
} while act i s a goto-reduce action;
nstk[top+l . .] := [act] ;
pos := m in(pos, top) ;

act := lookahead_action(nstk , t2 , npos) ;
if act # error then
{ get next token;

}
}

pstk[ppos+l . .] := stk.state[ppos+l . .] ;
ppos := pos;
stk.state[pos+l . .] := nstk[pos+l . .] ;
pos := npos ;

if ad =accept then
return ;

error Jecovery() ;

Figure 4 : Driver with 3 deferred tokens
puted on the lookahead symbol. If the first non­
reduce action computed on the lookahead is valid,
the temporary state stack is copied into the state
stack and the parsing can continue. Otherwise , the
error recovery routine is invoked with the unadul­
terated state stack. This idea captures the essence
of what needs to be done, but it is too costly for
practical use.

Instead of copying the information, the tem­
porary stack is used to hold the values of the
contiguous elements of the state stack that have
been added or rewritten . If the moves turn out
to be valid , then only the added or rewritten el­
ements are copied to the state stack. Otherwis�,
the original configuration is passed · to the error ·
recovery routine. This idea is illustrated in the lookahead_action function of Figure 3, written in
pseudo-code.

The lookahead_action function always returns

92

the first non-reduce action computed on the looka­
head symbol . If that action is valid , the state se­
quence of the new configuration consists of the el­
ements l . .pos of stk .state . and the elements pos +
l . .top + 1 of tstk .

A parser with actions deferred on one token
can be constructed as follows. Starting with the
initial configuration, the parser advances through
the input stream one token at a time after verify­
ing that the token in question is a valid input by
invoking the lookahead_action function . When the lookahead_action function is invoked with a valid
lookahead it returns either a shift or a shift-reduce
action which is processed immediately. As men­
tioned earlier, .shift-reduce actions and all their as­
sociated goto-reduce and final goto actions may be
processed without deferral. After successfully pro­
cessing a token, the next token is .read in and the
process is repeated on the new configuration. If,
on the other hand, the lookahead_action function
returned the error action, the state stack is not
updated and the error recovery routine is invoked
instead .

A driver routine can be constructed, using the lookahead_action function, to defer parsing actions
on n tokens given n state stacks. In experiments
with this method, parsing has been deferred for
three tokens. The three stacks that are used are :
pstk which captures the configuration of the parser
prior to processing any action induced by prevtok ,
stk which captures the configuration prior to pro­
cessing actions induced by curtok , and nstk which
captures the configuration prior to processing ac­
tions induced by the successor of curtok . Asso­
ciated with each of these stacks are three integer
variables: ppos, pos and npos which are used to
mark the position of the top element in the corre­
sponding stack that is still valid after the actions
induced by the relevant lookahead symbol are ap­
plied. Figure 4 shows the body of a driver routine
with actions deferred on three input symbols.

3 Recovery Strategies

Each recovery attempt is called a trial. The ef­
fectiveness of a recovery is evaluated using a vali­
dation function: parse_check , which indicates how
many tokens . in the input buffer can be success­
fully parsed after the repair in question is applied : parse_check distance. A recovery trial is not con­
sidered successful unless the parse_check distance
is greater than or equal to a certain value, called min_distance . Experiments have shown that a
good choice for min_distance is 2 [1 1] .

The parse_check function is essentially an LR driver that simulates the parse until it has either shifted all the tokens in the buffer, completed the parse successfully, or reached a token in error.
In the following subsections, algorithms for optimizing the necessary error recovery informa­tion and implementing the three different recovery strategies are presented .

3.1 Primary Recovery Given a configuration: q1 , q2 , . . . , qm I t 1 , t2 , . . . , tn , where t1 is assumed to be the error token, the pri­mary recovery finds the best possible primary re­pair (if any) for that configuration. The selection of a best primary repair is based on three criteria: • the parse_check distance • the misspelling index • the order in which the trials are performed. The misspelling index is a real value between 0.0 and 1 .0 that is associated with each primary re­covery trial . When a new token is substituted for the error token - a simple substitution, a misspelling function is invoked to determine the misspelling in­dex; i .e . , the relative proximity of the two tokens in question expressed as a p-robabilistic value. For other kinds of recoveries, the misspelling index is set to a constant value depending on the recovery in question and other conditions. This will be dis­cussed later. Primary recoveries are attempted in the fol­lowing order: merging of the error token (t 1) with its successor (t2); deletion of t 1 ; insertion of each terminal candidate in t..:.symbols(qm) before t 1 ; substitution of each legal terminal candidate in Lsymbols(qm) for t 1 ; insertion of each non ter­minal candidate in nLsymbols (qm) before t 1 ; and, finally, substitution of each nonterminal candidate
nt_symbols(qm) for t 1 ; For now, one can assume that for a state q , !_symbols(q) and nLsymbols(q) yield the sets of all terminal and nonterminal sym­bols, respectively, on which actions are defined in
q. Optimization of these sets is discussed in sec­tion 3 .3 . As the trials are performed, the primary re­covery routine keeps track of the most succesf�l trial . Initially, the merge recovery is chosen since it is attempted first . If a subsequent recovery yields a larger pai'se_check distance than the previously chosen recovery or it yields the same parse_check distance but with a greater misspelling index, then it is chosen instead as the best recovery candidate. For the merge trial , the character string rep­resentation of t2 , is concatenated to the charac-

93

ter string representation of f 1 to obtain a merged string s. A test is then performed to determine if s is the character string representation of some t E Lsymbols(qm) - If such an_ element t, called a merge candidate, is found , a new configuration is obtained by temporarily replacing f 1 and t2 with t in the input sequence and the parse_check distance is computed for this new configuration . As described in the previous section , the de­ferred driver insures that the state qm on top of the stack of the error configuration is the state en­tered prior to the execution of any action on f 1 .

In that configuration, it may be possible to exe­cute a sequence of reduce, goto-reduce and goto actions before the illegality of t1 is detected in another state qe . In such a case, the .. elements in Lsymbols(qm) that are also in Lsymbols(qe) are given priority in applying the insertion and substitution trials. (It is not hard to show that Lsymbols (qe) � t..symbols(qm) -) The benefits of this ordering can be seen in the following example :
writ e (1*5+6 ; 2*3 , 4/2) In this erroneous Pascal statement, a semicolon is used instead of a comma after the first parame­ter . Assume state qm is the first state that en­counters the semicolon . . At that point, the parser has just shifted an expression operand and the set of valid lookahead symbols inclucfes not only the comma but all the arithmetic operators. However, if the parser is allowed to interpret the operand as a complete expression , it will enter an error state qe where the comma is the only candidate. In order to give priority to the candidates in an error state qe , it is necessary to identify when the parser has entered such a state. State qe can be computed in the lookahead_action function by inserting the following statement after lines 3: and 13 . in Figure 3 :

error ..state := act;

3.1.1 The Mispelling Index For a successful merge trial , the misspelling index is set to 1 . 0 since the merged string must perfectly match the character string representation of the merge candidate. As mentioned earlier, a misspelling function is invoked to calculate the misspelling index for a simple substitution. The misspelling function used in this method was proposed by Uhl (14] . The dis­tance between two words is measured by the num­ber of letter inversions, insertions and deletions. The smaller the distance between two words, the

more likely it is that one is a misspelling of the other. For all other recoveries, the misspelling index is set to 0 .0 .
3.2 Seconda·ry Recovery Secondary recovery (also called Phrase-level recov­ery [8] [12]) is based on the identification of an error phrase which is then deleted from the input or replaced by a suitable nonterminal symbol or reduction goal. If the string:

t 1 , . . . , tn (1)

is an error configuration, then a substring
t1 , . . . , t; - 1 (2)

1 :s; i :s; m, 1 :s; j :s; n , of that configuration-· is an error phrase - (of the configuration) if removing that substring allows the parser to advance at least min_·distance tokens into the forward context , or if there is a nonterminal A such that a valid action is defined in state qi on A, and after processing A, the parser can advance at least min_distance into · the forward context . Here, qi , A and t; are the recovery state; reduction goal and recovery symbol, respectively. The scheme used in this method to select er­ror phrases reflects a fundamental distinction that is made among three different kinds of errors. Con­sider the error configuration (2) above. The case of the empty error phrase is considered during pri­mary recovery as a nonterminal insertion. Simi­larly, the case where an error phrase c l t 1 is deleted or replaced by a nonterminal candidate is processed by a primary recovery deletion or nonterminal sub­stitution. Next , priority is given to a successful secondary recovery that consumes no input sym­bol and requires no insertion of a reduction goal; i .e . , a recovery based on the removal of an error phrase of the form ,Bk where ,B # c. This kind of error is called a misplacement error, and ,B is called a misplaced phrase. The-following Pascal program illustrates this case:
1 . program P (IHPUT ,OUTPUT) ;
2 . var ! : real ;

<--------->
•Error : Misplaced construct (s)
3 . type ORDER=array [1 . . MAX] of real ;
4 . var Q : integer ;·
5 . begin
6 . end . Finally, the case in which one or more input symbols and/or states must be deleted or replaced with a nonterminal candidate is considered . In

94

that case, input symbols are consumed faster than states. In other words, the error phrases are ·se­lected as indicated by the row-major order of the table below:
c lt 1 , . . . , tn qm lt1 , • . . , tn

q2 , . • . , qm jt 1 , . . • , tn
In this final case, each error phrase selected is re­moved from the base configuration (1) . An ini­tial attempt is made to recover by parse checking the resulting configuration. This action, called sec­ondary deletion, can be viewed as a multiple dele­tion of the symbols that make up t,he error phrase. Next, each element in the set of nonterminal can­didates for the newly exposed state on top of the state stack is substituted, in tum, for the ·error phrase and the parse_check function is invoked to determine its viability. This ·action is called , a sec­ondary substit'lition. This process ,continues until a successful recovery is found or all the possibilities are exhausted. Iri secondary recovery, the aim is to find a re­pair that least alters the original configuration. For this reason, misplacement trials -are performed sep­arately from the other secondary trials and given, higher priority, since such a rep-air does not delete any symbol from the forward context and t-ehds to remove whole structures from the left context that have been previously analysed. The parse.check· distance is used as the criterion to select the best misplacement repair. After the misplacement tri­als, a secondary deletion and substitution_ trial _is performed on successive error phrases. The se­lection of a hest deletion or substitution repair is based on the length of the relevant error phrase and the parse_check distance, with deletion_ having pri­ority over substitution in case of a tie. The length of an error phrase ,Blx is obtained by adding the length ·of the string x :to the number of non-null symbols in ,B. Given the best misplacement repair and the best deletion or substitution repair, if the misplace­ment repafr is based on a shorter error phrase or it yields a longer parse_check distance, then it is chosen. Otherwise, the deletion or substitution is chosen .
3 .3 Optimization of Candidates Consider the case of a secondary substitution in which a recovery goal A must be inserted into the input stream. In such a case, every nonterminal

E - -E + T
T - •T * F
F - ·F i P
P - -id

E - -1'
T - •F
F - -P
P - · (E)

Figure 5 : Items in a state qi

candidate in state qi is a potential reduction goal .
However, an implementation that checks all poten­
tial candidates for each error phrase would be pro­
hibitively slow.

Two optimizations are applied to the set of
nonterminal candidates in a given state to obtain,
in most _cases, a substantially reduced subset of rel­evant reduction goals.

In [8] , the following concept is presented: a re­
duction goal A of error phrase .Blx in error config­
uration a,Blxy is important if .Blx has no reduction
goal B such that B --+.+ A. In this method a more
restricted concept of an important symbol is used.
The new concept takes into consideration the full
context of the error phrase. A nonterminal A on
which a transition is defined in a state qi is said to
be important if A does not appear in a single item
of the form B --+ • A in qi . For example, assume
a recovery state qi contains the set of items shown
in Figure 5 . By the definition of [8] , the only im­
portant reduction goal in such a state is E, since
T, F and P can be derived from E via a chain of
unit productions. By the more restricted definition
of this method, T and F would also be considered
important symbols since they appear immediately
to the right of the dot in more than one item. To
understand the importance of T and F, assume
that the rules from which the items of Figure 5 are
derived are all the productions of a grammar and
consider the following erroneous input strings :

()) (* id + id
()) (j id + id

If E is the only important symbol considered,
then the best secondary repair that is achievable is
the replacement of " ()) (* id" by E in the first
sentence and " ()) (j id" by E in the second
sentence. However, it is clear from the grammar
that replacing " ()) (" by T in the first sentence
and by F in the second sentence would be prefer­
able.

One further notices that using F as a reduc­
tion goal in the first sentence would have worked
just as well , since after a transition on F, with the
symbol "*" as lookahead, a reduction by the rule
"T --+ F" would be applied . Similarly, P could

95

have been used as a suitable reduction goal in both
sentences. This leads to the following concept , on
which the second optimization is based : a nonter­
minal element C of a set of non terminal candidates S in an LR state q is said to be relevant with re­
spect to S if there does not exist a nonterminal D,
such that D E S, D -=p C, and D can be success­
fully substituted for C as a reduction goal for any
error phrase with q as the recovery state.

Given a set S of nonterminal candidates for
a given state, the objective is to find the largest
subset S' C S such that S' contains only relevant
reduction goals. Let S = {B1 , . . . , Bk } for 1 :'.S i :'.S k, Bi E S is relevant iff �Bi , j # i , such that B. _.__+ B · The proof of this assertion follows i,...rm J •
directly from the definition of an LR parser. If
a nonterminal B can be substituted for an error
phrase , then the recovery symbol t in question must
be a valid lookahead symbol for any rule derivable
from B. In particular, if Bi ⇒ fm Bj and Bj is
substituted for an error phase where Bi is known
to be a valid reduction goal , the recovery symbol
will cause B; to be reduced to Bi .

For each state q in an LR automaton , the set nLsymbols(q) is obtained as follows. Starting with
the set of nonterminal symbols on which an ac­
tion is defined in q , remove all unimportant sym­
bols from that set , and reduce the resulting set
further by removing all irrelevant reduction goals
from it. For example, consider the state qi of Fig­
ure 5 . State qi contains nonterminal transitions on
the symbols E, T, F and P. The only unimpor­
tant symbol in that set is P. After P is removed,
the irrelevant symbols E and T are removed from
the subset {E, T, F} leaving F as the only relevant
reduction goal in qi .

The notion of an important symbol can also be
extended to terminal candidates in the Lsymbols
,sets. Once again , consider the state qi of Figure 5 .
This state contains a single terminal action on the
symbol id, but, since id appears only in the item
P --+ - id, it is not an important candidate in qi .
The removal of unimporta_nt terminals improves
the time performance of the primary recovery and
saves space. However, it may suppress some oppor­
tunities for merging and misspelling corrections.

In [13] , an algorithm is presented that can be
used to further reduce the space used by Lsymbols
and nt_symbols .
3.4 Scope Recovery

One of the most common errors committed by
programmers is the omission of block closers such
as an end statement or a right parenthesis. Such

if..stm t -+ I F cond THEN
�tJist elsif.Jist opt...else

END IF ;
sUist -: stmt I stJist stmt
elsifJist -+ c: I elsifJist ELSIF cond THEN stJist
opt_else _/ £ I ELSE stJist
stm t -+ : . . I · if..stm t I . . .

Figure 6 : BNF rule for Ada if statement

an error is referred to as a scope error. Scope er­
rors are · common because the structures requiring
block closers are usually recursive structures that , ·
in practice, are specified in a nested fashion. In
such a case, a matchin·g block closer must accom­
pany each structure · in the nest . For example, if a
user specifies an expression that is missing a sin­
gle right parenthesis, primary recovery can success- ·
fully insert that symbol . However, if two or more
right parenthesis are missing, neither primary nor
secondary recovery can successfully repair such an
error. Similarly, consider the BNF rule for an Ada if -statement in Figure · 6 [9] : If an Ada if statement
is specified without the "EN D IF ;'' closer, neither
of the two recovery techniques mentioned so far can
effectively repair this error. The repair that is nec­
essary for this kind of error is the insertion of a
sequence of symbols; called multiple symbol inser-tion.

. Scope recovery ·was first introduced by ,Burke and Fisher (1 1] . Their technique requires that each
closing sequence be supplied by the user as a list
of terminal symbols. Scope recovery is attempted
by checking whether or not the insertion of a �om­
bination of these closing sequences can allow the
parser to recover.

By contrast , the scope recovery technique used
in this method is based on the identification of one
or more recursively defined rules that are incom­
pletely specified, and insertion of the appropriate
closing symbols to complete these phrases. All nec­
essary scope information required by this method is
precomputed automatically from the input gram­
mar. In addition , the method is based on a pattern
match with complete rules rather than just the in­
sertion of closing sequences of terminal symbols .
As a result , the diagnosis of scope errors is more
accurate in that it identifies whole structures that
are incompletely specified instead of just the miss­
ing sequence of closing terminals.

96

3.4.1 Scope Information
Definition 3.1 A rule A - o:B/3 is a scoped
rule ifa -:j; £, B ⇒• -yA.6, for some arbitrary string
"Y and fJ, and /3 -p,• t .

In the example of Figure 5 , the rule P - (E)
is a scoped rule since P can be derived from E.
The if ...stmt rule of Figure 6 is also a .scoped rule
since each of the bold symbols following TH EN in
that rule can recursively derive a string contain_ing
the symbol if...stmt. A scope can be derived from a ·
scoped rule for each recursive symbol in the right­
hand side of the scoped rule.

A scope is a quintuple (1r, u, a , A , Q) where 1r
and u are strings of symbols called scope prefix
and scope suffix, resp�ctively, a is a terminal sy�­
bol called the scope lookahead, A is a nonterminal
symbol called the left-hand side and Q is a set of
states. The s�ope prefix is the prefix of a suit(!,ble strin!J. deriva:ble from ·the scoped rule in que�tiori .
It is used to determine whether or not a recovery
by the associated scope is applicable; i .e . , a_t run
time, a repair by a given scope is considered only
if this initial substring of the suitable string can be
successfully derived before the error token causes
an _err�r actior,i . The scope suffix is the suffix (of the
suitable string) that follows the scope prefix. When
diagnosing a scope error, the user is advised to in­
sert the _symbols of the scope suffix into the input
stream to complete the specification of the scoped
rule. The scope lookahead symbol (string, if the
grammar is LR(k)) is a terminal symbol (string}
that rriay immediately . follow ·the p·refix in a legal
input . The left-hand sid� of the scope is the non­
terminal on the left of the scoped rule. , The set
Q contains the states of the LR(k) automaton in
which the left-hand side can be introduced through
closure.

Given a scoped rule A - o:B/3, the scope
information related to B is computed as follows.
Since f3 -p, • l , there exists a string 1/;X </J such that /3 ⇒• 1/;X <P, l/; ⇒• t , and ·x ⇒;m aw . Let o:Blj)X <P
be the suitable string mentioned above, then a
valid scope for the above rule is (o:Btf;, X <P , a , A , Q),
where Q i s the set of states in the LR automaton
containing a transition on A.

A s a n example , consider the if...stmt rule of Fig­
ure 6 and the scope induced by the nonterminal
stJist in its right-hand side . To put it in the form A - o:B/3, let B be the symbol "stJ.ist" . It fol­
lows that o is the string " IF cond TH EN" , and /3 is
the string "elsifJist opLelse E N D I F ;" . Let 1/; be
the string "el sifJ.ist opt...else" and let X be the
symbol "EN D'' . One observes that /3 is exactly in

Let scope..seq be a global output variable.
- Initially, scope..seq= [] and scope_trial is
invoked with the sequence q1 , . . . , qm . The input
sequence t1 , . . . , tn is assumed to be global.
proc scope_triai(stack) ;
{ for each scope (1ri , O'i , a i , Ai , Qi) do

{ sstk := stack;

}
}

ad := lookahead_action(sstk, lli , pos)
if act ¥ error then
{ sstk[pos+1 . .j := tstk[pos+l . .] ;

top := #sstk - l1h l ;

}

if top > o then
{ pref := [in..sym [sstkLiH : j in top+L#sstk] ;

if pref == 7ri and sstk[top] E Qi then

}

{ do

}

{ top := top - rhs[act] + 1 ;
_ act : = GOTO(sstk[top] , l hs[act]) ;
} while ad is a goto-reduce action
sstk[top+i .. } := [act] ;
if prschck(sstk, t1 , . . . , tn) > m in..dist then
{ scop�...seq := [i] ;

· return;
}
elst?
{ scope ... ttial(sstk);

}

if scop�...seq -/- [] then
scope..seq := stope...seq + [i] ;

return;

Figure 7: st:ope_irial procedure

the desired form 1/;X </J. Thus, assuming the set of
transition states Q is available i the scope induced
by st.list for the tule iLstmt is:

(IF tond THEN st.Jist elsifJist opt_else, END IF ; ,
END, if..stmt, Q)

The other recursive symbols in if...stmt: elsif-1ist
and opt_else induce exactly the same scope as
st-1ist , since they are both nullable.

3.4.2 Scope Error Detection
Given an error configuration:

and a set of scopes:

97

the applicability of scope recovery to this config­
uration is determined as follows . . For each scope
(1ri , (ji , ai , Ai , Qi) , a three-step test is performed:

step 1 : The lookahead_action function is invoked
with ai as the current token to check if ai is
a valid lookahead symbol for the viable pre­
fix. As a side-effect , this function updates the
state stack configuration (using" a temporary
stack) to reflect all reduce actions, including
empty reductions, induced by ai . If the action
returned by lookaheadaction is the error ac­
tion then the whole test fails. Otherwise, step
2 is executed.

step 2: A pattern match is made between the pre­
fix 1ri and the topmost l 1ri I symbols of the vi­
able prefix, i .e . , the string obtained from the
concatenation of the in_symbols of the states:
qm- l'!"d+l . . . qm . Again , if this test fails , the
whole test fails. Otherwise the final step is
executed.

step 3: If qm- l*d E Qi then the test is successful .
Otherwise, the test fails.

If the three-step test is successful, · then a
parse check is performed on the configuration:
q1 , . . . , qm- l 1r; l , qA I t 1 , . . . tn , where qA is . the sue�
cessor state of qm and A 1 . If the par.S'e _eke.ck func­
tion can parse at least min_distance symbols, the
scope recovery . is successful . . Otherwise , it is in­
voked recursively with the new configuration above
and the process is repeated until scope recovery ei­
ther succeeds , or there are no more possibil ities to
try.

When scope recovery is successful, the se- ·
quence of scopes that resulted in. the successful , re­
covery must be saved for the issuan {:e of an accu­
rate diagnostic.

Figure 7 shows a complete implementatio� of
the scope error detection a.lgorithm. The algorithm
mirrors the preceding discussion in a st·raightfor­
ward manner. The emphasis in writing the code
was on the clarity of the exposition rather than
efficiency.

4 Recovery Phases
This section describes how the different repair
strategies discussed in the previous sections are in-

1 If the action in Qm on A is a goto-reduce, the parser is
simulated through the whole sequence of goto-reduce actions
that follow, until a goto action is encountered. This final
goto is executed and the resulting state sequence is used
instead. Note that these actions do not consume any input
symbol.

corporated into the unified two-phase scheme of this method. At the global level , the effectiveness of a recovery trial is measured based on two crite­ria: • the number of symbols that must be deleted if the repair in question is applied • the parse_check distance of the recovery The primary phase recovery which includes all re� covery trials that are based on at most a single in­put token modification is attempted first . If a suc­cessful primary phase· recovery is found that cannot be beaten by any other recovery in terms of the cri­teria above, it is accepted. If such a primary phase recovery is not found , secondary phase recovery is attempted. If a successful secondary phase recov­ery is found , then it is accepted . Otherwise, the er­ror recovery gets into a form of panic mode, where the current input buffer is flushed, new input to­kens are read in and secondary phase recovery is attempted again . This process is repeated until ei­ther a successful secondary recovery is obtained �r the end of the input stream is reached. When a recovery is accepted, the following ac­tions are taken : a diagnosis is issued, the repair is applied and the error recovery procedure returns successfully. The diagnosis of a prima�y recovery is stra�ghtforward. To diagnose a secondary deletion, the user i_s advised to delete the symbols in the er­ror phrase _ in question. Similarly, for a secondary substitution, the relevant reduction goal is sug­gested as a replacement for the error phrase. The location of an error phrase starts from the location assocJated with the recovery state to the location of the last .token in the error phrase. To diagnose a scope recovery, the location of prevtok is used to indicate where the symbols of the scope ·suffix in question should be inserted . A repair is applied by resetting the compo­nents of the main configuration (buffer and stk) . The resetting of the input buffer simply involves the insertion of some symbols into the buffer, the reading of new input tokens into the buffer , or the replacement of some buffer elements. The rese�­ting of the stack is more complicated . For a pri­mary recovery, one only needs to choose the stack on which the recovery was successful . For a sec­ondary recovery, all states following the recovery state are removed from the stack . For a scope re­covery, the sequence of states on top of the stack that corresponds to the prefix of the scope is re­moved and the repair proceeds as if the error. was a simple insertion of the left-hand side of the scope.

98

4.0.3 Primary Phase In the primary phase, error recovery is applied on each available configuration, starting with nstk , proceeding with stk and finally processing pstk . For each configuration, scope recovery i s attempted first followed by primary recovery. The same cri­teria used in choo�ing. a primary recovery is used in the primary phase. The n:iisspelling index of a scope recovery trial is set to 1 .0 . Thus, for a given configuration, a successful scope recovery al­ways has priority over a primary recovery trial that yields the same parse_check distance.
If a successful recovery is obtained from the primary phase and its stack configuration is nstk or stk , the recovery trial is evaluated against cer­tain secondary recovery trials on the stack config­uration in question before being accepted . . These recovery trials are the ones whose repair actions wo�ld have as little impact on the recovery config­uration as a primary recovery. They are misplace­ment recovery trials and scope recovery trials that require the deletion of one input token. The idea is to ensure that none of these borderline recoveries can be more effective than the best primary phase recovery.

4.0.4 Secondary Phase In the secondary phase, secondary error re­covery is applied first on nstk if it is available and then on st k. If a successful secondary recovery is obtained, a check is made to see if the error can be better repaired by the closing of some scopes followed by less radica:l surgery. Consider the fol­lowing Pascal example:
if count [listdata [sub] : = O then

x : = ((3]] ; In the first line, the user is missing a closing "] " and the assignment operator " : ='� is used instead of a relational operator. This error is · detected on the symbol " : =" . In the second line, tl�e user used the wrong closing symbols in an expression and the error is detected on the first "] " . Noth­ing short of a secondary deletion of the sequence
" [listdata [sub] : = O" in the first instance and a secondary substitution of "expression" for the se­quence " ((3]] " would successfully repair these errors·. However, it is not difficult to see that they can be repaired more accurately, using scope recov­ery by proceeding as follows. Before accepting a secondary recovery based on an error phrase ,Blx , a scope recovery check is performed on the recovery configuration, followed by the deletion of up to l x l tokens in the right con­text . If the scope recovery is successful , then its

associated repair actions are applied without the subsequent deletion and the secondary phase re­turns successfully. The parser fails right away and once again invokes the error recovery procedure. On this next round, primary and secondary phase recovery are attempted again. This subsequent at­tempt will at best fix the remaining input or at worst delete a string up to the length x from the input . In the example above, the missing "] " is in­serted and "relational..Dperator" is substituted for " : =" in the first line. In the second line, two clos­ing ")" are inserted, followed by a deletion of the pair "] l " (See figure 2) .
5 Implementation

The error recovery method described in this paper has been successfully implemented. An LALR(k) parser generator was modified to produce the ex­tra tables required: t_symbols , nLsymbols and the scopes. The method can be used with any LR(k) application. However, programming lan­guages were used in our examples because such ap­plications are the best illustrations of the problems one is likely to encounter. Parsers were built for Ada and Pascal and tested on the Ada examples of [1 1] and the Pascal examples of [6] . Penello and DeRemer [4] proposed that the quality of a repair be rated "excellent" if it repaired the test as a human reader would have, "good" if not but it still resulted in a reasonable program and no spurious errors, and "poor" if it resulted in one or more spurious errors. Based on these categories, the performance of this method on the test set of [6] was 85.9% excellent , 14 . 1 % good and 0 .0% poor. In fact , most of the "good" recoveries resulted from errors whose repair required some kind of semantic judgement. The time performance of this method is excel­lent , usually requiring less than 50 milliseconds per error on a 16 MHz PS/2 model 80.
6 Conclusion

This paper described a new practical LR(k) er­ror diagnosis and recovery method which improves upon the current state-of-the-art in some signifi­cant ways. Specifically, • a new deferred driver is introduced which al­ways detects an error at the earliest possible point ; • the primary recovery is generalized to process both terminal and nonterminal symbols ;

99

• the secondary recovery is an efficient (and completely automatic) generalization of the error production method; • techniques are presented for optimizing error recovery candidates; • a new automatic method for scope recovery is presented. Moreover, this method is completely language- and machine-independent and more efficient than other known methods .
7 Acknowledgements The author wishes to thank the following people for many helpful suggestions and their encourage­ment throughout the development of this work: Michael Burke, Ron Cytron, Gerald Fisher , Lau­rent Pautet , Matthew Smosna. The author is es.:. pecially thankful to Fran Allen and Ed Schon berg for their advice and support .
References

[l] F . L. DeRemer
Practical Translators for LR(k) Languages.
Ph.D. dissertation, MIT, Cambridge, Mass . , 1 96�1

[2] F. L. DeRemer: Simple LR(k) Grammars,
Comm. ACM 1 4 , 7, 453-460 July 1 971

[3] Alfred V . Aho, Jeffrey D . Ullman
The Theory of Parsing, Translation , and Compiling
Volume I & II, Prentice Hall , Inc 1 972

[4] Penello, T . J . , and DeRemer, F. L.
A forward ·move algorithm for LR error recovery.
ACM Symposium on Principles of Programming Lan­
guages (Jan . 23-25 , 1 978, Tuscan) , pp. 241-254

[5] Ripley, G . D., and Druseikis, F.C.
A statistical analysis of syntax errors
Journal of Computer Languages 3,4 (1 978) (227-240)

[6] Ripley, D . J . : Pascal Syntax Errors Data Base
RCA Laboratories, Princeton, N.J . , Apr 1 979

[7] S. L. Graham, C. B. Haley, W. N. Joy
Practical LR Error Recovery
SIGPLAN 79 Symposium on Compiler Construction
(August 6- 1 0 , 1 979 , Denver) ACM, NY, pp 1 68- 1 75 .

[8} Seppo Sippu , Eljas Soisalon-Soininen
A Syntax-Error-Handling Technique and Its Experimen­
tal Analysis
ACM Transactions on Programming Languages and Sys­
tems, Vol. 5, No. 4, October 1 983, Pages 656-679

[9] Ref. Manual for the ADA Programming Language
ANSI/Mil-STD- 1 8 1 5A: 1 983, U .S . Dept . of Defense.

(1 0] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman
Compilers: Principles, Techniques and Tools
Addison Wesley Publishing Company, 1 986

[1 1]

[1 2]

[13]

[14]

Michael Burke, Gerald A. Fisher
A Practical Method for LR and LL Syntactic Error Diag­
nosis and Recovery
ACM Transactions on Programming Languages and Sys­
tems, Vol . 9, No. 2, April 1 987, Pages 1 64- 1 97
Nigel P. Chapman : LR Parsing: Theory and Practice
Cambridge University Press, 1 987
Philippe Charles, Laurent Pautet
Efficient Representation of LR Error Recovery tables
Unpubl ished paper, 1 989

J iiergen Uhl : Private communications

