Ziyi Yin
2025
Shadow-Activated Backdoor Attacks on Multimodal Large Language Models
Ziyi Yin
|
Muchao Ye
|
Yuanpu Cao
|
Jiaqi Wang
|
Aofei Chang
|
Han Liu
|
Jinghui Chen
|
Ting Wang
|
Fenglong Ma
Findings of the Association for Computational Linguistics: ACL 2025
This paper delves into a novel backdoor attack scenario, aiming to uncover potential security risks associated with Multimodal Large Language Models (MLLMs) during multi-round open-ended conversations with users. In the practical use of MLLMs, users have full control over the interaction process with the model, such as using their own collected photos and posing arbitrary open-ended questions. Traditional backdoor attacks that rely on adding external triggers are less applicable. To this end, we introduce a new shadow-activated backdoor attacking paradigm in this paper, wherein attacks implicitly inject malicious content into the responses of MLLMs when the responses explicitly relate to the shadowed object, i.e., without any triggers. To facilitate the shadow-activated backdoor attack, we present a novel framework named BadMLLM to achieve the desired behaviors by constructing a poisoned dataset using GPT-4 Vision and implementing an attention-regularized tuning strategy to address the semantic discontinuity between the original response and the inserted promotion. Extensive experimental results conducted on five MLLMs, three objects, and two types of promotion slogans have demonstrated impressive performance in achieving both efficacy and utility goals, thereby highlighting the significant potential risks concealed within MLLMs.
2023
Hierarchical Pretraining on Multimodal Electronic Health Records
Xiaochen Wang
|
Junyu Luo
|
Jiaqi Wang
|
Ziyi Yin
|
Suhan Cui
|
Yuan Zhong
|
Yaqing Wang
|
Fenglong Ma
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Pretraining has proven to be a powerful technique in natural language processing (NLP), exhibiting remarkable success in various NLP downstream tasks. However, in the medical domain, existing pretrained models on electronic health records (EHR) fail to capture the hierarchical nature of EHR data, limiting their generalization capability across diverse downstream tasks using a single pretrained model. To tackle this challenge, this paper introduces a novel, general, and unified pretraining framework called MedHMP, specifically designed for hierarchically multimodal EHR data. The effectiveness of the proposed MedHMP is demonstrated through experimental results on eight downstream tasks spanning three levels. Comparisons against eighteen baselines further highlight the efficacy of our approach.
Search
Fix author
Co-authors
- Fenglong Ma 2
- Jiaqi Wang 2
- Yuanpu Cao 1
- Aofei Chang 1
- Jinghui Chen 1
- show all...