Yuho Lee


2025

pdf bib
Towards Multi-dimensional Evaluation of LLM Summarization across Domains and Languages
Hyangsuk Min | Yuho Lee | Minjeong Ban | Jiaqi Deng | Nicole Hee-Yeon Kim | Taewon Yun | Hang Su | Jason Cai | Hwanjun Song
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Evaluation frameworks for text summarization have evolved in terms of both domain coverage and metrics. However, existing benchmarks still lack domain-specific assessment criteria, remain predominantly English-centric, and face challenges with human annotation due to the complexity of reasoning. To address these, we introduce MSumBench, which provides a multi-dimensional, multi-domain evaluation of summarization in English and Chinese. It also incorporates specialized assessment criteria for each domain and leverages a multi-agent debate system to enhance annotation quality. By evaluating eight modern summarization models, we discover distinct performance patterns across domains and languages. We further examine large language models as summary evaluators, analyzing the correlation between their evaluation and summarization capabilities, and uncovering systematic bias in their assessment of self-generated summaries. Our benchmark dataset is publicly available at https://github.com/DISL-Lab/MSumBench.

pdf bib
Learning to Summarize from LLM-generated Feedback
Hwanjun Song | Taewon Yun | Yuho Lee | Jihwan Oh | Gihun Lee | Jason Cai | Hang Su
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Developing effective text summarizers remains a challenge due to issues like hallucinations, key information omissions, and verbosity in LLM-generated summaries. This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness. We introduce FeedSum, a large-scale dataset containing multi-dimensional LLM feedback on summaries of varying quality across diverse domains. Our experiments show how feedback quality, dimensionality, and granularity influence preference learning, revealing that high-quality, multi-dimensional, fine-grained feedback significantly improves summary generation. We also compare two methods for using this feedback: supervised fine-tuning and direct preference optimization. Finally, we introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries, demonstrating that smaller models can achieve superior performance with appropriate training. The full dataset and SummLlama3-8B model are available at https://huggingface.co/datasets/DISLab/FeedSum and https://huggingface.co/DISLab/SummLlama3-8B.

2024

pdf bib
UniSumEval: Towards Unified, Fine-grained, Multi-dimensional Summarization Evaluation for LLMs
Yuho Lee | Taewon Yun | Jason Cai | Hang Su | Hwanjun Song
Findings of the Association for Computational Linguistics: EMNLP 2024

Existing benchmarks for summarization quality evaluation often lack diverse input scenarios, focus on narrowly defined dimensions (e.g., faithfulness), and struggle with subjective and coarse-grained annotation schemes. To address these shortcomings, we create UniSumEval benchmark, which extends the range of input context (e.g., domain, length) and provides fine-grained, multi-dimensional annotations. We use AI assistance in data creation, identifying potentially hallucinogenic input texts, and also helping human annotators reduce the difficulty of fine-grained annotation tasks. With UniSumEval, we benchmark nine latest language models as summarizers, offering insights into their performance across varying input contexts and evaluation dimensions. Furthermore, we conduct a thorough comparison of SOTA automated summary evaluators. Our benchmark data will be available at https://github.com/DISL-Lab/UniSumEval-v1.0.