Yue Cui


2025

pdf bib
Enhancing Tool Learning in Large Language Models with Hierarchical Error Checklists
Yue Cui | Liuyi Yao | Shuchang Tao | Weijie Shi | Yaliang Li | Bolin Ding | Xiaofang Zhou
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have significantly advanced natural language processing, particularly through the integration of external tools and APIs. However, their effectiveness is frequently hampered by parameter mis-filling during tool calling. In this paper, we propose the Hierarchical Tool Error Checklist (HiTEC) framework to systematically diagnose and mitigate tool-calling errors without relying on extensive real-world interactions. HiTEC introduces a two-tiered approach: a global error checklist that identifies common, cross-tool issues, and a local error checklist that targets tool-specific and contextual failures. Building on this structure, we propose two deployments: HiTEC-In Context Learning (HiTEC-ICL) and HiTEC-Kahneman-Tversky Optimization (HiTEC-KTO). HiTEC-ICL embeds the global checklist in the initial prompts and leverages a two-round conversational interaction to dynamically refine parameter handling, while HiTEC-KTO generates high-quality negative examples to drive fine-tuning via preference-based optimization. Extensive experiments across five public datasets demonstrate that our framework significantly improves parameter-filling accuracy and tool-calling success rates compared to baseline methods.

2022

pdf bib
CTAP for Chinese:A Linguistic Complexity Feature Automatic Calculation Platform
Yue Cui | Junhui Zhu | Liner Yang | Xuezhi Fang | Xiaobin Chen | Yujie Wang | Erhong Yang
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The construct of linguistic complexity has been widely used in language learning research. Several text analysis tools have been created to automatically analyze linguistic complexity. However, the indexes supported by several existing Chinese text analysis tools are limited and different because of different research purposes. CTAP is an open-source linguistic complexity measurement extraction tool, which prompts any research purposes. Although it was originally developed for English, the Unstructured Information Management (UIMA) framework it used allows the integration of other languages. In this study, we integrated the Chinese component into CTAP, describing the index sets it incorporated and comparing it with three linguistic complexity tools for Chinese. The index set includes four levels of 196 linguistic complexity indexes: character level, word level, sentence level, and discourse level. So far, CTAP has implemented automatic calculation of complexity characteristics for four languages, aiming to help linguists without NLP background study language complexity.