Yu-Gang Jiang

Also published as: Yu-gang Jiang


2025

pdf bib
EvoWiki: Evaluating LLMs on Evolving Knowledge
Wei Tang | Yixin Cao | Yang Deng | Jiahao Ying | Bo Wang | Yizhe Yang | Yuyue Zhao | Qi Zhang | Xuanjing Huang | Yu-Gang Jiang | Yong Liao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge utilization is a critical aspect of LLMs, and understanding how they adapt to evolving knowledge is essential for their effective deployment. However, existing benchmarks are predominantly static, failing to capture the evolving nature of LLMs and knowledge, leading to inaccuracies and vulnerabilities such as contamination. In this paper, we introduce EvoWiki, an evolving dataset designed to reflect knowledge evolution by categorizing information into stable, evolved, and uncharted states. EvoWiki is fully auto-updatable, enabling precise evaluation of continuously changing knowledge and newly released LLMs. Through experiments with Retrieval-Augmented Generation (RAG) and Continual Learning (CL), we evaluate how effectively LLMs adapt to evolving knowledge. Our results indicate that current models often struggle with evolved knowledge, frequently providing outdated or incorrect responses. Moreover, the dataset highlights a synergistic effect between RAG and CL, demonstrating their potential to better adapt to evolving knowledge. EvoWiki provides a robust benchmark for advancing future research on the knowledge evolution capabilities of large language models.

pdf bib
AgentGym: Evaluating and Training Large Language Model-based Agents across Diverse Environments
Zhiheng Xi | Yiwen Ding | Wenxiang Chen | Boyang Hong | Honglin Guo | Junzhe Wang | Xin Guo | Dingwen Yang | Chenyang Liao | Wei He | Songyang Gao | Lu Chen | Rui Zheng | Yicheng Zou | Tao Gui | Qi Zhang | Xipeng Qiu | Xuanjing Huang | Zuxuan Wu | Yu-Gang Jiang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have emerged as a promising foundation to build generally-capable agents (LLM-based agents) that can handle multi-turn decision-making tasks across various environments. However, the community lacks a unified interactive framework that covers diverse environments for comprehensive evaluation of agents, and enables exploration and learning for their self-improvement. To address this, we propose AgentGym, a framework featuring 7 real-world scenarios, 14 environments, and 89 tasks for unified, real-time, and concurrent agent interaction. We construct expanded instruction set, high-quality trajectories, and comprehensive benchmarking suite for developing LLM-based agents. Moreover, AgentGym supports interactive exploration and learning for agents through multi-turn interactions and real-time feedback. Based on AgentGym, we take the initial step to develop LLM-based agents that can handle diverse tasks via methods like self-improvement or reinforcement learning. Experimental results show that the trained agents can achieve results comparable to commercial models. We hope our work can help the community develop more advanced LLM-based agents. We release the code, dataset, benchmark, and checkpoints at https://agentgym.github.io/.

2024

pdf bib
AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
Jun Zhan | Junqi Dai | Jiasheng Ye | Yunhua Zhou | Dong Zhang | Zhigeng Liu | Xin Zhang | Ruibin Yuan | Ge Zhang | Linyang Li | Hang Yan | Jie Fu | Tao Gui | Tianxiang Sun | Yu-Gang Jiang | Xipeng Qiu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages.We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs.Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/.

pdf bib
Fake Alignment: Are LLMs Really Aligned Well?
Yixu Wang | Yan Teng | Kexin Huang | Chengqi Lyu | Songyang Zhang | Wenwei Zhang | Xingjun Ma | Yu-Gang Jiang | Yu Qiao | Yingchun Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The growing awareness of safety concerns in large language models (LLMs) has sparked considerable interest in the evaluation of safety. This study investigates an under-explored issue about the evaluation of LLMs, namely the substantial discrepancy in performance between multiple-choice questions and open-ended questions. Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization. That is, LLM only remembers the answer style for open-ended safety questions, which makes it unable to solve other forms of safety tests. We refer to this phenomenon as fake alignment and construct a comparative benchmark to empirically verify its existence in LLMs. We introduce a Fake alIgNment Evaluation (FINE) framework and two novel metrics——Consistency Score (CS) and Consistent Safety Score (CSS), which jointly assess two complementary forms of evaluation to quantify fake alignment and obtain corrected performance estimation. Applying FINE to 14 widely-used LLMs reveals several models with purported safety are poorly aligned in practice. Subsequently, we found that multiple-choice format data can also be used as high-quality contrast distillation-based fine-tuning data, which can strongly improve the alignment consistency of LLMs with minimal fine-tuning overhead. For data and code, see https://github.com/AIFlames/Fake-Alignment.

2018

pdf bib
Cross-Domain Sentiment Classification with Target Domain Specific Information
Minlong Peng | Qi Zhang | Yu-gang Jiang | Xuanjing Huang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The task of adopting a model with good performance to a target domain that is different from the source domain used for training has received considerable attention in sentiment analysis. Most existing approaches mainly focus on learning representations that are domain-invariant in both the source and target domains. Few of them pay attention to domain-specific information, which should also be informative. In this work, we propose a method to simultaneously extract domain specific and invariant representations and train a classifier on each of the representation, respectively. And we introduce a few target domain labeled data for learning domain-specific information. To effectively utilize the target domain labeled data, we train the domain invariant representation based classifier with both the source and target domain labeled data and train the domain-specific representation based classifier with only the target domain labeled data. These two classifiers then boost each other in a co-training style. Extensive sentiment analysis experiments demonstrated that the proposed method could achieve better performance than state-of-the-art methods.