Wenxuan Wang


2025

pdf bib
Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training
Youliang Yuan | Wenxiang Jiao | Wenxuan Wang | Jen-tse Huang | Jiahao Xu | Tian Liang | Pinjia He | Zhaopeng Tu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs) by identifying and tackling a refusal position bias within safety tuning data, which compromises the models’ ability to appropriately refuse generating unsafe content. We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position, significantly enhancing their safety capabilities. DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation (MLE) with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence. Our empirical evaluation, conducted using LLaMA3 and Mistral model families across six attack scenarios, demonstrates that our method not only improves model safety without compromising performance but also surpasses baseline methods in defending against attacks.

pdf bib
EAGLE: Expert-Guided Self-Enhancement for Preference Alignment in Pathology Large Vision-Language Model
Meidan Ding | Jipeng Zhang | Wenxuan Wang | Haiqin Zhong | Xiaoqin Wang | Xinheng Lyu | Wenting Chen | Linlin Shen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in Large Vision Language Models (LVLMs) show promise for pathological diagnosis, yet their application in clinical settings faces critical challenges of multimodal hallucination and biased responses. While preference alignment methods have proven effective in general domains, acquiring high-quality preference data for pathology remains challenging due to limited expert resources and domain complexity. In this paper, we propose EAGLE (Expert-guided self-enhancement for preference Alignment in patholoGy Large vision-languagE model), a novel framework that systematically integrates medical expertise into preference alignment. EAGLE consists of three key stages: initialization through supervised fine-tuning, self-preference creation leveraging expert prompting and medical entity recognition, and iterative preference following-tuning. The self-preference creation stage uniquely combines expert-verified chosen sampling with expert-guided rejected sampling to generate high-quality preference data, while the iterative tuning process continuously refines both data quality and model performance. Extensive experiments demonstrate that EAGLE significantly outperforms existing pathological LVLMs, effectively reducing hallucination and bias while maintaining pathological accuracy. The source code is available at https://github.com/meidandz/EAGLE.

pdf bib
Can’t See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs
Wenxuan Wang | Xiaoyuan Liu | Kuiyi Gao | Jen-tse Huang | Youliang Yuan | Pinjia He | Shuai Wang | Zhaopeng Tu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe—a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1,500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models’ abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness—prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning—but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.

pdf bib
Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs
Xiaoyuan Liu | Wenxuan Wang | Youliang Yuan | Jen-tse Huang | Qiuzhi Liu | Pinjia He | Zhaopeng Tu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper explores the problem of commonsense level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model’s internal commonsense knowledge. To study this issue, we introduce an automated framework, augmented with human-in-the-loop quality control, to generate inputs designed to simulate and evaluate these conflicts in MLLMs. Using this framework, we have crafted a diagnostic benchmark consisting of 374 original images and 1,122 high-quality question-answer (QA) pairs. The benchmark covers two aspects of conflict and three question types, providing a thorough assessment tool. We apply this benchmark to assess the conflict-resolution capabilities of nine representative MLLMs from various model families. Our results indicate an evident over-reliance on parametric knowledge for approximately 20% of all queries, especially among Yes-No and action-related problems. Based on these findings, we evaluate the effectiveness of existing approaches to mitigating the conflicts and compare them to our “Focus-on-Vision” prompting strategy. Despite some improvement, the vision-knowledge conflict remains unresolved and can be further scaled through our data construction framework. Our proposed framework, benchmark, and analysis contribute to the understanding and mitigation of vision-knowledge conflicts in MLLMs.

pdf bib
Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models
Jie Liu | Wenxuan Wang | Su Yihang | Jingyuan Huang | Yudi Zhang | Cheng-Yi Li | Wenting Chen | Xiaohan Xing | Kao-Jung Chang | Linlin Shen | Michael R. Lyu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The significant breakthroughs of Medical Multi-Modal Large Language Models (Med-MLLMs) renovate modern healthcare with robust information synthesis and medical decision support. However, these models are often evaluated on benchmarks that are unsuitable for the Med-MLLMs due to the intricate nature of the real-world diagnostic frameworks, which encompass diverse medical specialties and involve complex clinical decisions. Thus, a clinically representative benchmark is highly desirable for credible Med-MLLMs evaluation. To this end, we introduce Asclepius, a novel Med-MLLM benchmark that comprehensively assesses Med-MLLMs in terms of: distinct medical specialties (cardiovascular, gastroenterology, etc.) and different diagnostic capacities (perception, disease analysis, etc.). Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties, stratifying into 3 main categories and 8 sub-categories of clinical tasks, and exempting overlap with the existing VQA dataset. We further provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists, providing insights into their competencies and limitations in various medical contexts. Our work not only advances the understanding of Med-MLLMs’ capabilities but also sets a precedent for future evaluations and the safe deployment of these models in clinical environments.

pdf bib
QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language
Qingsong Zou | Jingyu Xiao | Qing Li | Zhi Yan | Yuhang Wang | Li Xu | Wenxuan Wang | Kuofeng Gao | Ruoyu Li | Yong Jiang
Findings of the Association for Computational Linguistics: ACL 2025

Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to 64% on GPT-4-1106. Our code is available at https://anonymous.4open.science/r/QueryAttack-334B.

pdf bib
A Survey of LLM-based Agents in Medicine: How far are we from Baymax?
Wenxuan Wang | Zizhan Ma | Zheng Wang | Chenghan Wu | Jiaming Ji | Wenting Chen | Xiang Li | Yixuan Yuan
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) are transforming healthcare through LLM-based agents that can understand and assist with medical tasks. This survey examines the architectures, applications, and challenges of LLM-based agents in medicine. We analyze key components including system profiles, clinical planning, medical reasoning frameworks, and external capacity enhancement. The survey covers major applications in clinical decision support, medical documentation, training simulations, and healthcare service optimization, along with evaluation frameworks and metrics. While these agents show promise in enhancing healthcare delivery, challenges remain in hallucination management, multimodal integration, implementation, and ethics. We conclude by highlighting future directions in medical reasoning, physical system integration, and training simulations, providing researchers and practitioners with a structured overview of the field’s current state and prospects.

pdf bib
Chain-of-Jailbreak Attack for Image Generation Models via Step by Step Editing
Wenxuan Wang | Kuiyi Gao | Youliang Yuan | Jen-tse Huang | Qiuzhi Liu | Shuai Wang | Wenxiang Jiao | Zhaopeng Tu
Findings of the Association for Computational Linguistics: ACL 2025

Text-based image generation models, such as Stable Diffusion and DALL-E 3, hold significant potential in content creation and publishing workflows, making them the focus in recent years. Despite their remarkable capability to generate diverse and vivid images, considerable efforts are being made to prevent the generation of harmful content, such as abusive, violent, or pornographic material. To assess the safety of existing models, we introduce a novel jailbreaking method called Chain-of-Jailbreak (CoJ) attack, which compromises image generation models through a step-by-step editing process. Specifically, for malicious queries that cannot bypass the safeguards with a single prompt, we intentionally decompose the query into multiple sub-queries. The image generation models are then prompted to generate and iteratively edit images based on these sub-queries. To evaluate the effectiveness of our CoJ attack method, we constructed a comprehensive dataset, CoJ-Bench, including nine safety scenarios, three types of editing operations, and three editing elements. Experiments on four widely-used image generation services provided by GPT-4V, GPT-4o, Gemini 1.5 and Gemini 1.5 Pro, demonstrate that our CoJ attack method can successfully bypass the safeguards of models for over 60% cases, which significantly outperforms other jailbreaking methods (i.e., 14%). Further, to enhance these models’ safety against our CoJ attack method, we also propose an effective prompting-based method, Think-Twice Prompting, that can successfully defend over 95% of CoJ attack. Our dataset and code are included in the supplementary materials and will be made publicly available upon publication.

pdf bib
IntentionESC: An Intention-Centered Framework for Enhancing Emotional Support in Dialogue Systems
Xinjie Zhang | Wenxuan Wang | Qin Jin
Findings of the Association for Computational Linguistics: ACL 2025

In emotional support conversations, unclear intentions can lead supporters to employ inappropriate strategies, inadvertently imposing their expectations or solutions on the seeker. Clearly defined intentions are essential for guiding both the supporter’s motivations and the overall emotional support process. In this paper, we propose the Intention-centered Emotional Support Conversation (IntentionESC) framework, which defines the possible intentions of supporters in emotional support conversations, identifies key emotional state aspects for inferring these intentions, and maps them to appropriate support strategies. While Large Language Models (LLMs) excel in text generating, they fundamentally operate as probabilistic models trained on extensive datasets, lacking a true understanding of human thought processes and intentions. To address this limitation, we introduce the Intention CEntric Chain-of-Thought (ICECoT) mechanism. ICECoT enables LLMs to mimic human reasoning by analyzing emotional states, inferring intentions, and selecting suitable support strategies, thereby generating more effective emotional support responses. To train the model with ICECoT and integrate expert knowledge, we design an automated annotation pipeline that produces high-quality training data. Furthermore, we develop a comprehensive evaluation scheme to assess emotional support efficacy and conduct extensive experiments to validate our framework. Our data and code will be publically released to facilitate further research.

pdf bib
NYA’s Offline Speech Translation System for IWSLT 2025
Wenxuan Wang | Yingxin Zhang | Yifan Jin | Binbin Du | Yuke Li
Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)

This paper reports NYA’s submissions to the IWSLT 2025 Offline Speech Translation (ST) task. The task includes three translation directions: English to Chinese, German, and Arabic. In detail, we adopt a cascaded speech translation architecture comprising automatic speech recognition (ASR) and machine translation (MT) components to participate in the unconstrained training track. For the ASR model, we use the Whisper medium model. For the neural machine translation (NMT) model, the wider and deeper Transformer is adopted as the backbone model. Building upon last year’s work, we implement multiple techniques and strategies such as data augmentation, domain adaptation, and model ensemble to improve the translation quality of the NMT model. In addition, we adopt X-ALMA as the foundational LLM-based MT model, with domain-specific supervised fine-tuning applied to train and optimize our LLM-based MT model. Finally, by employing COMET-based Minimum Bayes Risk decoding to integrate and select translation candidates from both NMT and LLM-based MT systems, the translation quality of our ST system is significantly improved, and competitive results are obtained on the evaluation set.

2024

pdf bib
Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in Large Language Models
Wenxuan Wang | Wenxiang Jiao | Jingyuan Huang | Ruyi Dai | Jen-tse Huang | Zhaopeng Tu | Michael Lyu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper identifies a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g., ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark of concrete (e.g., holidays and songs) and abstract (e.g., values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need to critically examine cultural dominance and ethical considerations in their development and deployment. We show that two straightforward methods in model development (i.e., pretraining on more diverse data) and deployment (e.g., culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.

pdf bib
LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models
Yuxuan Wan | Wenxuan Wang | Yiliu Yang | Youliang Yuan | Jen-tse Huang | Pinjia He | Wenxiang Jiao | Michael Lyu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs) such as ChatGPT and GPT-4. Despite LLMs’ prowess in tasks like writing assistance, code generation, and machine translation, assessing their ability to reason has been challenging. Traditional evaluations often prioritize accuracy on downstream tasks over direct assessments of reasoning processes. LogicAsker addresses this gap by employing a set of atomic reasoning skills grounded in propositional and predicate logic to systematically examine and improve the reasoning prowess of LLMs. Our methodology reveals significant gaps in LLMs’ learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models. Moreover, we leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%. To our knowledge, this is the first effort to utilize test case outcomes to effectively refine LLMs’ formal reasoning capabilities. We make our code, data, and results publicly available(https://github.com/yxwan123/LogicAsker) to facilitate further research and replication of our findings.

pdf bib
On the Reliability of Psychological Scales on Large Language Models
Jen-tse Huang | Wenxiang Jiao | Man Ho Lam | Eric John Li | Wenxuan Wang | Michael Lyu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent research has focused on examining Large Language Models’ (LLMs) characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory, indicating a satisfactory level of reliability. Furthermore, our research explores the potential of GPT-3.5 to emulate diverse personalities and represent various groups—a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions.

pdf bib
Beyond Literal Descriptions: Understanding and Locating Open-World Objects Aligned with Human Intentions
Wenxuan Wang | Yisi Zhang | Xingjian He | Yichen Yan | Zijia Zhao | Xinlong Wang | Jing Liu
Findings of the Association for Computational Linguistics: ACL 2024

Visual grounding (VG) aims at locating the foreground entities that match the given natural language expression. Previous datasets and methods for classic VG task mainly rely on the prior assumption that the given expression must literally refer to the target object, which greatly impedes the practical deployment of agents in real-world scenarios. Since users usually prefer to provide the intention-based expressions for the desired object instead of covering all the details, it is necessary for the agents to interpret the intention-driven instructions. Thus, in this work, we take a step further to the intention-driven visual-language (V-L) understanding. To promote classic VG towards human intention interpretation, we propose a new intention-driven visual grounding (IVG) task and build a largest-scale IVG dataset named IntentionVG with free-form intention expressions. Considering that practical agents need to move and find specific targets among various scenarios to realize the grounding task, our IVG task and IntentionVG dataset have taken the crucial properties of both multi-scenario perception and egocentric view into consideration. Besides, various types of models are set up as the baselines to realize our IVG task. Extensive experiments on our IntentionVG dataset and baselines demonstrate the necessity and efficacy of our method for the V-L field. To foster future research in this direction, our newly built dataset and baselines will be publicly available at https://github.com/Rubics-Xuan/IVG.

pdf bib
All Languages Matter: On the Multilingual Safety of LLMs
Wenxuan Wang | Zhaopeng Tu | Chang Chen | Youliang Yuan | Jen-tse Huang | Wenxiang Jiao | Michael Lyu
Findings of the Association for Computational Linguistics: ACL 2024

Safety lies at the core of developing and deploying large language models (LLMs). However, previous safety benchmarks only concern the safety in one language, e.g. the majority language in the pretraining data such as English. In this work, we build the first multilingual safety benchmark for LLMs, XSafety, in response to the global deployment of LLMs in practice. XSafety covers 14 kinds of commonly used safety issues across 10 languages that span several language families. We utilize XSafety to empirically study the multilingual safety for 4 widely-used LLMs, including both close-API and open-source models. Experimental results show that all LLMs produce significantly more unsafe responses for non-English queries than English ones, indicating the necessity of developing safety alignment for non-English languages. In addition, we propose a simple and effective prompting method to improve the multilingual safety of ChatGPT by enhancing cross-lingual generalization of safety alignment. Our prompting method can significantly reduce the ratio of unsafe responses by 42% for non-English queries. We will release all the data and results to facilitate future research on LLMs’ safety.

pdf bib
Does ChatGPT Know That It Does Not Know? Evaluating the Black-Box Calibration of ChatGPT
Youliang Yuan | Wenxuan Wang | Qingshuo Guo | Yiming Xiong | Chihao Shen | Pinjia He
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recently, ChatGPT has demonstrated remarkable performance in various downstream tasks such as open-domain question answering, machine translation, and code generation. As a general-purpose task solver, an intriguing inquiry arises: Does ChatGPT itself know that it does not know, without any access to internal states? In response to this query, we present an initial evaluation of ChatGPT for black-box calibration. We designed three types of proxy confidence, from three perspectives to assess its performance. Experiments are conducted on five datasets, spanning four tasks, and the results show that ChatGPT has a degree of capability for black-box calibration. Specifically, proxy confidence displayed a significantly positive Pearson correlation (95.16%) with accuracy in the TruthfulQA dataset, while revealing a negative correlation in the ModAr dataset. We delved deeper into ChatGPT’s black-box calibration ability by examining failure cases in the ModAr dataset. Our analysis revealed that ChatGPT’s tendency to exhibit overconfidence may stem from its reliance on semantic priors. Furthermore, we investigated why ChatGPT performs relatively well in TruthfulQA. The findings suggest that ChatGPT might implicitly acquire calibration skills during the reinforcement learning process, rather than relying solely on simplistic heuristics.

2023

pdf bib
ParroT: Translating during Chat using Large Language Models tuned with Human Translation and Feedback
Wenxiang Jiao | Jen-tse Huang | Wenxuan Wang | Zhiwei He | Tian Liang | Xing Wang | Shuming Shi | Zhaopeng Tu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) like ChatGPT have exhibited remarkable abilities on a wide range of natural language processing (NLP) tasks, including various machine translation abilities accomplished during chat. However, these models are only accessible through restricted APIs, which creates barriers to new research and advancements in the field. Therefore, we propose ParroT, a framework to enhance and regulate the translation abilities during chat based on open-source LLMs (e.g., LLaMA), human-written translation and feedback data. Specifically, ParroT reformulates translation data into the instruction-following style, and introduces a “Hint” field for incorporating extra requirements to regulate the translation process. Accordingly, we propose three instruction types for finetuning ParroT models, including translation instruction, contrastive instruction, and error-guided instruction. Experiments on Flores subsets and WMT22 test sets suggest that translation instruction improves the translation performance of vanilla LLMs significantly while error-guided instruction can lead to further improvement, which demonstrates the importance of learning from low-quality translations annotated by humans. We also demonstrate the potential of automatic evaluation tools in providing quality information of translations, when constructing error-guided instructions for directions that lack human annotation data. Please refer to our Github project for more implementation details: https://github.com/wxjiao/ParroT.

2022

pdf bib
Understanding and Improving Sequence-to-Sequence Pretraining for Neural Machine Translation
Wenxuan Wang | Wenxiang Jiao | Yongchang Hao | Xing Wang | Shuming Shi | Zhaopeng Tu | Michael Lyu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we present a substantial step in better understanding the SOTA sequence-to-sequence (Seq2Seq) pretraining for neural machine translation (NMT). We focus on studying the impact of the jointly pretrained decoder, which is the main difference between Seq2Seq pretraining and previous encoder-based pretraining approaches for NMT. By carefully designing experiments on three language pairs, we find that Seq2Seq pretraining is a double-edged sword: On one hand, it helps NMT models to produce more diverse translations and reduce adequacy-related translation errors. On the other hand, the discrepancies between Seq2Seq pretraining and NMT finetuning limit the translation quality (i.e., domain discrepancy) and induce the over-estimation issue (i.e., objective discrepancy). Based on these observations, we further propose simple and effective strategies, named in-domain pretraining and input adaptation to remedy the domain and objective discrepancies, respectively. Experimental results on several language pairs show that our approach can consistently improve both translation performance and model robustness upon Seq2Seq pretraining.

pdf bib
Tencent’s Multilingual Machine Translation System for WMT22 Large-Scale African Languages
Wenxiang Jiao | Zhaopeng Tu | Jiarui Li | Wenxuan Wang | Jen-tse Huang | Shuming Shi
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes Tencent’s multilingual machine translation systems for the WMT22 shared task on Large-Scale Machine Translation Evaluation for African Languages. We participated in the constrained translation track in which only the data and pretrained models provided by the organizer are allowed. The task is challenging due to three problems, including the absence of training data for some to-be-evaluated language pairs, the uneven optimization of language pairs caused by data imbalance, and the curse of multilinguality. To address these problems, we adopt data augmentation, distributionally robust optimization, and language family grouping, respectively, to develop our multilingual neural machine translation (MNMT) models. Our submissions won the 1st place on the blind test sets in terms of the automatic evaluation metrics. Codes, models, and detailed competition results are available at https://github.com/wxjiao/WMT2022-Large-Scale-African.

2020

pdf bib
Rethinking the Value of Transformer Components
Wenxuan Wang | Zhaopeng Tu
Proceedings of the 28th International Conference on Computational Linguistics

Transformer becomes the state-of-the-art translation model, while it is not well studied how each intermediate component contributes to the model performance, which poses significant challenges for designing optimal architectures. In this work, we bridge this gap by evaluating the impact of individual component (sub-layer) in trained Transformer models from different perspectives. Experimental results across language pairs, training strategies, and model capacities show that certain components are consistently more important than the others. We also report a number of interesting findings that might help humans better analyze, understand and improve Transformer models. Based on these observations, we further propose a new training strategy that can improves translation performance by distinguishing the unimportant components in training.