Shyamnath Gollakota
2025
LlamaPIE: Proactive In-Ear Conversation Assistants
Tuochao Chen
|
Nicholas Scott Batchelder
|
Alisa Liu
|
Noah A. Smith
|
Shyamnath Gollakota
Findings of the Association for Computational Linguistics: ACL 2025
We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices. Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations. We address several challenges, including determining when to respond, crafting concise responses that enhance conversations, leveraging knowledge of the user for context-aware assistance, and real-time, on-device processing. To achieve this, we construct a semi-synthetic dialogue dataset and propose a two-model pipeline: a small model that decides when to respond and a larger model that generates the response. We evaluate our approach on real-world datasets, demonstrating its effectiveness in providing helpful, unobtrusive assistance. User studies with our assistant, implemented on Apple Silicon M2 hardware, show a strong preference for the proactive assistant over both a baseline with no assistance and a reactive AI assistant, highlighting the potential of LlamaPIE to enhance live conversations.
2024
Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents
Bandhav Veluri
|
Benjamin N Peloquin
|
Bokai Yu
|
Hongyu Gong
|
Shyamnath Gollakota
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Despite broad interest in modeling spoken dialogue agents, most approaches are inherently “half-duplex” – restricted to turn-based interaction with responses requiring explicit prompting by the user or implicit tracking of interruption or silence events. Human dialogue, by contrast, is “full-duplex” allowing for rich synchronicity in the form of quick and dynamic turn-taking, overlapping speech, and backchanneling. Technically, the challenge of achieving full-duplex dialogue with LLMs lies in modeling synchrony as pre-trained LLMs do not have a sense of “time”. To bridge this gap, we propose Synchronous LLMs for full-duplex spoken dialogue modeling. We design a novel mechanism to integrate time information into Llama3-8b so that they run synchronously with the real-world clock. We also introduce a training recipe that uses 212k hours of synthetic spoken dialogue data generated from text dialogue data to create a model that generates meaningful and natural spoken dialogue, with just 2k hours of real-world spoken dialogue data. Synchronous LLMs outperform state-of-the-art in dialogue meaningfulness while maintaining naturalness. Finally, we demonstrate the model’s ability to participate in full-duplex dialogue by simulating interaction between two agents trained on different datasets, while considering Internet-scale latencies of up to 240 ms.
Search
Fix author
Co-authors
- Nicholas Scott Batchelder 1
- Tuochao Chen 1
- Hongyu Gong 1
- Alisa Liu 1
- Benjamin N Peloquin 1
- show all...