Shlomo Chazan


2025

pdf bib
Measuring the Effect of Transcription Noise on Downstream Language Understanding Tasks
Ori Shapira | Shlomo Chazan | Amir David Nissan Cohen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the increasing prevalence of recorded human speech, spoken language understanding (SLU) is essential for its efficient processing. In order to process the speech, it is commonly transcribed using automatic speech recognition technology. This speech-to-text transition introduces errors into the transcripts, which subsequently propagate to downstream NLP tasks, such as dialogue summarization. While it is known that transcript noise affects downstream tasks, a general-purpose and systematic approach to analyzing its effects across different noise severities and types has not been addressed. We propose a configurable framework for assessing task models in diverse noisy settings, and for examining the impact of transcript-cleaning techniques. The framework facilitates the investigation of task model behavior, which can in turn support the development of effective SLU solutions. We exemplify the utility of our framework on three SLU tasks and four task models, offering insights regarding the effect of transcript noise on tasks in general and models in particular. For instance, we find that task models can tolerate a certain level of noise, and are affected differently by the types of errors in the transcript.

2023

pdf bib
Optimized Tokenization for Transcribed Error Correction
Tomer Wullach | Shlomo Chazan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The challenges facing speech recognition systems, such as variations in pronunciations, adverse audio conditions, and the scarcity of labeled data, emphasize the necessity for a post-processing step that corrects recurring errors. Previous research has shown the advantages of employing dedicated error correction models, yet training such models requires large amounts of labeled data which is not easily obtained. To overcome this limitation, synthetic transcribed-like data is often utilized, however, bridging the distribution gap between transcribed errors and synthetic noise is not trivial. In this paper, we demonstrate that the performance of correction models can be significantly increased by training solely using synthetic data. Specifically, we empirically show that: (1) synthetic data generated using the error distribution derived from a set of transcribed data outperforms the common approach of applying random perturbations; (2) applying language-specific adjustments to the vocabulary of a BPE tokenizer strike a balance between adapting to unseen distributions and retaining knowledge of transcribed errors. We showcase the benefits of these key observations, and evaluate our approach using multiple languages, speech recognition systems and prominent speech recognition datasets.