Samuel Albanie


2025

pdf bib
GAMEBoT: Transparent Assessment of LLM Reasoning in Games
Wenye Lin | Jonathan Roberts | Yunhan Yang | Samuel Albanie | Zongqing Lu | Kai Han
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) are increasingly deployed in real-world applications that demand complex reasoning. To track progress, robust benchmarks are required to evaluate their capabilities beyond superficial pattern recognition. However, current LLM reasoning benchmarks often face challenges such as insufficient interpretability, performance saturation or data contamination. To address these challenges, we introduce GAMEBoT, a gaming arena designed for rigorous and transparent assessment of LLM reasoning capabilities. GAMEBoT decompose complex reasoning in games into predefined modular subproblems. This decomposition allows us to design a suite of Chain-of-Thought (CoT) prompts infused with domain knowledge to guide LLMs in addressing these subproblems before action selection. Furthermore, we develop a suite of rule-based algorithms to generate ground truth for these subproblems, enabling rigorous validation of the LLMs’ intermediate reasoning steps. This approach facilitates evaluation of both the quality of final actions and the accuracy of the underlying reasoning process. GAMEBoT also naturally alleviates the risk of data contamination through dynamic games and head-to-head LLM competitions. We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics. Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.

pdf bib
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Adhiraj Ghosh | Sebastian Dziadzio | Ameya Prabhu | Vishaal Udandarao | Samuel Albanie | Matthias Bethge
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Traditional fixed test datasets fall short in evaluating the open-ended capabilities of foundation models. To address this, we propose ONEBench (OpeN-Ended Benchmarking), a new paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench enables custom benchmarks for specific capabilities while reusing and aggregating samples, mitigating overfitting and dataset bias for broader capability assessment. It reframes model evaluation as selecting and aggregating sample-level tests.Transitioning from task-specific benchmarks to ONEBench introduces two challenges: heterogeneity (aggregating diverse metrics) and incompleteness(comparing models tested on different data subsets). To address these, we propose an aggregation algorithm that ensures identifiability (asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model comparisons with relatively little data. On homogenous datasets, our algorithm produces rankings that highly correlate with average scores. Moreover, it remains robust to over 95% missing measurements, reducing evaluation costs by up to 20x with minimal impact on rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains, and enabling targeted model testing across diverse capabilities.

2024

pdf bib
HelloFresh: LLM Evalutions on Streams of Real-World Human Editorial Actions across X Community Notes and Wikipedia edits
Tim Franzmeyer | Aleksandar Shtedritski | Samuel Albanie | Philip Torr | Joao F. Henriques | Jakob Foerster
Findings of the Association for Computational Linguistics: ACL 2024

Benchmarks have been essential for driving progress in machine learning. A better understanding of LLM capabilities on real world tasks is vital for safe development.Designing adequate LLM benchmarks is challenging: Data from real-world tasks is hard to collect, public availability of static evaluation data results in test data contamination and benchmark overfitting, and periodically generating new evaluation data is tedious and may result in temporally inconsistent results. We introduce HelloFresh, based on continuous streams of real-world data generated by intrinsically motivated human labelers. It covers recent events from X (formerly Twitter) community notes and edits of Wikipedia pages, mitigating the risk of test data contamination and benchmark overfitting.Any X user can propose an X note to add additional context to a misleading post (formerly tweet); if the community classifies it as helpful, it is shown with the post. Similarly, Wikipedia relies on community-based consensus, allowing users to edit articles or revert edits made by other users.Verifying whether an X note is helpful or whether a Wikipedia edit should be accepted are hard tasks that require grounding by querying the web.We backtest state-of-the-art LLMs supplemented with simple web search access and find that HelloFresh yields a temporally consistent ranking.To enable continuous evaluation on Hellofresh, we host a public leaderboard and periodically updated evaluation data at https://tinyurl.com/hello-fresh-LLM.

2023

pdf bib
Crosslingual Generalization through Multitask Finetuning
Niklas Muennighoff | Thomas Wang | Lintang Sutawika | Adam Roberts | Stella Biderman | Teven Le Scao | M Saiful Bari | Sheng Shen | Zheng Xin Yong | Hailey Schoelkopf | Xiangru Tang | Dragomir Radev | Alham Fikri Aji | Khalid Almubarak | Samuel Albanie | Zaid Alyafeai | Albert Webson | Edward Raff | Colin Raffel
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task genrealization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.