Sabur Butt


2025

pdf bib
Advances in Auto-Grading with Large Language Models: A Cross-Disciplinary Survey
Tania Amanda Nkoyo Frederick Eneye | Chukwuebuka Fortunate Ijezue | Ahmad Imam Amjad | Maaz Amjad | Sabur Butt | Gerardo Castañeda-Garza
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)

With the rise and widespread adoption of Large Language Models (LLMs) in recent years, extensive research has been conducted on their applications across various domains. One such domain is education, where a key area of interest for researchers is investigating the implementation and reliability of LLMs in grading student responses. This review paper examines studies on the use of LLMs in grading across six academic sub-fields: educational assessment, essay grading, natural sciences and technology, social sciences and humanities, computer science and engineering, and mathematics. It explores how different LLMs are applied in automated grading, the prompting techniques employed, the effectiveness of LLM-based grading for both structured and open-ended responses, and the patterns observed in grading performance. Additionally, this paper discusses the challenges associated with LLM-based grading systems, such as inconsistencies and the need for human oversight. By synthesizing existing research, this paper provides insights into the current capabilities of LLMs in academic assessment and serves as a foundation for future exploration in this area.

pdf bib
Detecting Sexism in Tweets: A Sentiment Analysis and Graph Neural Network Approach
Diana P. Madera-Espíndola | Zoe Caballero-Domínguez | Valeria J. Ramírez-Macías | Sabur Butt | Hector Ceballos
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

In the digital age, social media platforms like Twitter serve as an extensive repository of public discourse, including instances of sexism. It is important to identify such behavior since radicalized ideologies can lead to real-world violent acts. This project aims to develop a deep learning-based tool that leverages a combination of BERT (both English and multilingual versions) and GraphSAGE, a Graph Neural Network (GNN) model, alongside sentiment analysis and natural language processing (NLP) techniques. The tool is designed to analyze tweets for sexism detection and classify them into five categories.

2024

pdf bib
NLP Progress in Indigenous Latin American Languages
Atnafu Tonja | Fazlourrahman Balouchzahi | Sabur Butt | Olga Kolesnikova | Hector Ceballos | Alexander Gelbukh | Thamar Solorio
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The paper focuses on the marginalization of indigenous language communities in the face of rapid technological advancements. We highlight the cultural richness of these languages and the risk they face of being overlooked in the realm of Natural Language Processing (NLP). We aim to bridge the gap between these communities and researchers, emphasizing the need for inclusive technological advancements that respect indigenous community perspectives. We show the NLP progress of indigenous Latin American languages and the survey that covers the status of indigenous languages in Latin America, their representation in NLP, and the challenges and innovations required for their preservation and development. The paper contributes to the current literature in understanding the need and progress of NLP for indigenous communities of Latin America, specifically low-resource and indigenous communities in general.

2022

pdf bib
CIC@LT-EDI-ACL2022: Are transformers the only hope? Hope speech detection for Spanish and English comments
Fazlourrahman Balouchzahi | Sabur Butt | Grigori Sidorov | Alexander Gelbukh
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

Hope is an inherent part of human life and essential for improving the quality of life. Hope increases happiness and reduces stress and feelings of helplessness. Hope speech is the desired outcome for better and can be studied using text from various online sources where people express their desires and outcomes. In this paper, we address a deep-learning approach with a combination of linguistic and psycho-linguistic features for hope-speech detection. We report our best results submitted to LT-EDI-2022 which ranked 2nd and 3rd in English and Spanish respectively.