Roxana Pop


2025

pdf bib
GQC: LLM-Based Grouped QA Consolidation for Open-Domain Fact Verification at AVeriTeC
Dongzhuoran Zhou | Roxana Pop | Yuqicheng Zhu | Evgeny Kharlamov
Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)

Structured fact verification benchmarks like AVeriTeC decompose claims into QA pairs to support fine-grained reasoning. However, current systems generate QA pairs independently for each evidence sentence, leading to redundancy, drift, and noise. We introduce a modular LLM-based QA consolidation module that jointly filters, clusters, and rewrites QA pairs at the claim level. Experiments show that this method improves evidence quality and veracity prediction accuracy. Our analysis also highlights the impact of model scale and alignment on downstream performance.

pdf bib
SemQA: Evaluating Evidence with Question Embeddings and Answer Entailment for Fact Verification
Kjetil Indrehus | Caroline Vannebo | Roxana Pop
Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)

Automated fact-checking (AFC) of factual claims require efficiency and accuracy. Existing evaluation frameworks like Ev2R achieve strong semantic grounding but incur substantial computational cost, while simpler metrics based on overlap or one-to-one matching often misalign with human judgments. In this paper, we introduce SemQA, a lightweight and accurate evidence-scoring metric that combines transformer-based question scoring with bidirectional NLI entailment on answers. We evaluate SemQA by conducting human evaluations, analyzing correlations with existing metrics, and examining representative examples.

2024

pdf bib
FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining to Improve Fact Verification with Knowledge Graphs
Sushant Gautam | Roxana Pop
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)

Fact-checking is a crucial natural language processing (NLP) task that verifies the truthfulness of claims by considering reliable evidence. Traditional methods are labour- intensive, and most automatic approaches focus on using documents as evidence. In this paper, we focus on the relatively understudied fact-checking with Knowledge Graph data as evidence and experiment on the recently introduced FactKG benchmark. We present FactGenius, a novel method that enhances fact- checking by combining zero-shot prompting of large language models (LLMs) with fuzzy text matching on knowledge graphs (KGs). Our method employs LLMs for filtering relevant connections from the graph and validates these connections via distance-based matching. The evaluation of FactGenius on an existing benchmark demonstrates its effectiveness, as we show it significantly outperforms state-of- the-art methods. The code and materials are available at https://github.com/SushantGautam/FactGenius.