Analogies test a model’s ability to infer implicit relationships between concepts, making them a key benchmark for evaluating reasoning capabilities. While large language models (LLMs) are widely evaluated for reasoning in English, their abilities in Indic languages remain understudied, limiting our understanding of whether these models generalize across languages. To address this gap, we introduce a new Hindi Analogy Test Set (HATS), comprising 405 multiple-choice questions sourced from Indian government exams. We benchmark state-of-the-art multilingual LLMs using various prompting strategies and introduce a grounded Chain of Thought approach that leverages cognitive theories of analogical reasoning. This approach improves model performance on Hindi analogy questions. Our experiments show that models perform best with English prompts, irrespective of the prompting strategy. Our test set addresses the lack of a critical resource to evaluate LLM reasoning capabilities in Hindi. The test set is publicly available for research purposes here https://github.com/Inequilazitive/HATS-Hindi_Analogy_Test_Set
In this paper, we present a minimally-supervised approach to identify human needs expressed in tweets. Taking inspiration from Frustration-Aggression theory, we trained RoBERTa model to classify tweets expressing frustration which serves as an indicator of unmet needs. Although the notion of frustration is highly subjective and complex, the findings support the use of pretrained language model in identifying tweets with unmet needs. Our study reveals the major causes behind feeling frustrated during the lockdown and the second wave of the COVID-19 pandemic in India. Our proposed approach can be useful in timely identification and prioritization of emerging human needs in the event of a crisis.
Metaphors are creative cognitive constructs that are employed in everyday conversation to describe abstract concepts and feelings. Prevalent conceptual metaphors such as WAR, MONSTER, and DARKNESS in COVID-19 online discourse sparked a multi-faceted debate over their efficacy in communication, resultant psychological impact on listeners, and their appropriateness in social discourse. In this work, we investigate metaphors used in discussions around COVID-19 on Indian Twitter. We observe subtle transitions in metaphorical mappings as the pandemic progressed. Our experiments, however, didn’t indicate any affective impact of WAR metaphors on the COVID-19 discourse.