This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Temporal information extraction from unstructured text is essential for contextualizing events and deriving actionable insights, particularly in the medical domain. We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus. This task is inherently challenging due to complex clinical language, long documents, and sparse annotations. We introduce GraphTREx, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT) to capture local and global dependencies. Our HGT component facilitates information propagation across the document through innovative global landmarks that bridge distant entities and improves the state-of-the-art with 5.5% improvement in the tempeval F1 score over the previous best and up to 8.9% improvement on long-range relations, which presents a formidable challenge. We further demonstrate generalizability by establishing a strong baseline on the E3C corpus. Not only does this work advance temporal information extraction, but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
Community question answering forums provide a convenient platform for people to source answers to their questions including those related to healthcare from the general public. The answers to user queries are generally long and contain multiple different perspectives, redundancy or irrelevant answers. This presents a novel challenge for domain-specific concise and correct multi-answer summarization which we propose in this paper.
We describe our approach for the 1st Computational Linguistics Lay Summary Shared Task CL-LaySumm20. The task is to produce non-technical summaries of scholarly documents. The summary should be within easy grasp of a layman who may not be well versed with the domain of the research article. We propose a two step divide-and-conquer approach. First, we judiciously select segments of the documents that are not overly pedantic and are likely to be of interest to the laity, and over-extract sentences from each segment using an unsupervised network based method. Next, we perform abstractive summarization on these extractions and systematically merge the abstractions. We run ablation studies to establish that each step in our pipeline is critical for improvement in the quality of lay summary. Our approach leverages state-of-the-art pre-trained deep neural network based models as zero-shot learners to achieve high scores on the task.