This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Multimodal reference resolution, including phrase grounding, aims to understand the semantic relations between mentions and real-world objects. Phrase grounding between images and their captions is a well-established task. In contrast, for real-world applications, it is essential to integrate textual and multimodal reference resolution to unravel the reference relations within dialogue, especially in handling ambiguities caused by pronouns and ellipses. This paper presents a framework that unifies textual and multimodal reference resolution by mapping mention embeddings to object embeddings and selecting mentions or objects based on their similarity. Our experiments show that learning textual reference resolution, such as coreference resolution and predicate-argument structure analysis, positively affects performance in multimodal reference resolution. In particular, our model with coreference resolution performs better in pronoun phrase grounding than representative models for this task, MDETR and GLIP. Our qualitative analysis demonstrates that incorporating textual reference relations strengthens the confidence scores between mentions, including pronouns and predicates, and objects, which can reduce the ambiguities that arise in visually grounded dialogues.
Understanding expressions that refer to the physical world is crucial for such human-assisting systems in the real world, as robots that must perform actions that are expected by users. In real-world reference resolution, a system must ground the verbal information that appears in user interactions to the visual information observed in egocentric views. To this end, we propose a multimodal reference resolution task and construct a Japanese Conversation dataset for Real-world Reference Resolution (J-CRe3). Our dataset contains egocentric video and dialogue audio of real-world conversations between two people acting as a master and an assistant robot at home. The dataset is annotated with crossmodal tags between phrases in the utterances and the object bounding boxes in the video frames. These tags include indirect reference relations, such as predicate-argument structures and bridging references as well as direct reference relations. We also constructed an experimental model and clarified the challenges in multimodal reference resolution tasks.
The creation of instruction data and evaluation benchmarks for serving Large language models often involves enormous human annotation. This issue becomes particularly pronounced when rapidly developing such resources for a non-English language like Japanese. Instead of following the popular practice of directly translating existing English resources into Japanese (e.g., Japanese-Alpaca), we propose an efficient self-instruct method based on GPT-4. We first translate a small amount of English instructions into Japanese and post-edit them to obtain native-level quality. GPT-4 then utilizes them as demonstrations to automatically generate Japanese instruction data. We also construct an evaluation benchmark containing 80 questions across 8 categories, using GPT-4 to automatically assess the response quality of LLMs without human references. The empirical results suggest that the models fine-tuned on our GPT-4 self-instruct data significantly outperformed the Japanese-Alpaca across all three base pre-trained models. Our GPT-4 self-instruct data allowed the LLaMA 13B model to defeat GPT-3.5 (Davinci-003) with a 54.37% win-rate. The human evaluation exhibits the consistency between GPT-4’s assessments and human preference. Our high-quality instruction data and evaluation benchmark are released here.
We present KWJA, a high-performance unified Japanese text analyzer based on foundation models.KWJA supports a wide range of tasks, including typo correction, word segmentation, word normalization, morphological analysis, named entity recognition, linguistic feature tagging, dependency parsing, PAS analysis, bridging reference resolution, coreference resolution, and discourse relation analysis, making it the most versatile among existing Japanese text analyzers.KWJA solves these tasks in a multi-task manner but still achieves competitive or better performance compared to existing analyzers specialized for each task.KWJA is publicly available under the MIT license at https://github.com/ku-nlp/kwja.
Bridging reference resolution is the task of finding nouns that complement essential information of another noun. The essentiality varies depending on noun combination and context and has a continuous distribution. Despite the continuous nature of essentiality, existing datasets of bridging reference have only a few coarse labels to represent the essentiality. In this work, we propose a crowdsourcing-based annotation method that considers continuous essentiality. In the crowdsourcing task, we asked workers to select both all nouns with a bridging reference relation and a noun with the highest essentiality among them. Combining these annotations, we can obtain continuous essentiality. Experimental results demonstrated that the constructed dataset improves bridging reference resolution performance. The code is available at https://github.com/nobu-g/bridging-resolution.
The meaning of natural language text is supported by cohesion among various kinds of entities, including coreference relations, predicate-argument structures, and bridging anaphora relations. However, predicate-argument structures for nominal predicates and bridging anaphora relations have not been studied well, and their analyses have been still very difficult. Recent advances in neural networks, in particular, self training-based language models including BERT (Devlin et al., 2019), have significantly improved many natural language processing tasks, making it possible to dive into the study on analysis of cohesion in the whole text. In this study, we tackle an integrated analysis of cohesion in Japanese texts. Our results significantly outperformed existing studies in each task, especially about 10 to 20 point improvement both for zero anaphora and coreference resolution. Furthermore, we also showed that coreference resolution is different in nature from the other tasks and should be treated specially.
The global pandemic of COVID-19 has made the public pay close attention to related news, covering various domains, such as sanitation, treatment, and effects on education. Meanwhile, the COVID-19 condition is very different among the countries (e.g., policies and development of the epidemic), and thus citizens would be interested in news in foreign countries. We build a system for worldwide COVID-19 information aggregation containing reliable articles from 10 regions in 7 languages sorted by topics. Our reliable COVID-19 related website dataset collected through crowdsourcing ensures the quality of the articles. A neural machine translation module translates articles in other languages into Japanese and English. A BERT-based topic-classifier trained on our article-topic pair dataset helps users find their interested information efficiently by putting articles into different categories.