Information extraction (IE) needs vary over time, where a flexible information extraction (IE) system can be useful. Despite this, existing IE systems are either fully supervised, requiring expensive human annotations, or fully unsupervised, extracting information that often do not cater to user’s needs. To address these issues, we formally introduce the task of “IE on-the-fly”, and address the problem using our proposed Adaptive IE framework that uses human-in-the-loop refinement to adapt to changing user questions. Through human experiments on three diverse datasets, we demonstrate that Adaptive IE is a domain-agnostic, responsive, efficient framework for helping users access useful information while quickly reorganizing information in response to evolving information needs.
Recent works have demonstrated that incorporating search during inference can significantly improve reasoning capabilities of language agents. Some approaches may make use of the ground truth or rely on model’s own generated feedback. The search algorithm uses this feedback to then produce values that will update its criterion for exploring and exploiting various reasoning paths. In this study, we investigate how search and model’s self-feedback can be leveraged for reasoning tasks. First, we explore differences in ground-truth feedback and self-feedback during search for math reasoning. Second, we observe limitations in applying search techniques to more complex tasks like tool-calling and design domain-specific approaches to address these gaps. Our experiments reveal challenges related to generalization when solely relying on self-feedback during search. For search to work effectively, either access to the ground-truth is needed or feedback mechanisms need to be carefully designed for the specific task.
Neural coreference resolution models trained on one dataset may not transfer to new, low-resource domains. Active learning mitigates this problem by sampling a small subset of data for annotators to label. While active learning is well-defined for classification tasks, its application to coreference resolution is neither well-defined nor fully understood. This paper explores how to actively label coreference, examining sources of model uncertainty and document reading costs. We compare uncertainty sampling strategies and their advantages through thorough error analysis. In both synthetic and human experiments, labeling spans within the same document is more effective than annotating spans across documents. The findings contribute to a more realistic development of coreference resolution models.
Cross-lingual word embeddings transfer knowledge between languages: models trained on high-resource languages can predict in low-resource languages. We introduce CLIME, an interactive system to quickly refine cross-lingual word embeddings for a given classification problem. First, CLIME ranks words by their salience to the downstream task. Then, users mark similarity between keywords and their nearest neighbors in the embedding space. Finally, CLIME updates the embeddings using the annotations. We evaluate CLIME on identifying health-related text in four low-resource languages: Ilocano, Sinhalese, Tigrinya, and Uyghur. Embeddings refined by CLIME capture more nuanced word semantics and have higher test accuracy than the original embeddings. CLIME often improves accuracy faster than an active learning baseline and can be easily combined with active learning to improve results.
Active learning strives to reduce annotation costs by choosing the most critical examples to label. Typically, the active learning strategy is contingent on the classification model. For instance, uncertainty sampling depends on poorly calibrated model confidence scores. In the cold-start setting, active learning is impractical because of model instability and data scarcity. Fortunately, modern NLP provides an additional source of information: pre-trained language models. The pre-training loss can find examples that surprise the model and should be labeled for efficient fine-tuning. Therefore, we treat the language modeling loss as a proxy for classification uncertainty. With BERT, we develop a simple strategy based on the masked language modeling loss that minimizes labeling costs for text classification. Compared to other baselines, our approach reaches higher accuracy within less sampling iterations and computation time.