Meng Luo


2025

pdf bib
EMULATE: A Multi-Agent Framework for Determining the Veracity of Atomic Claims by Emulating Human Actions
Spencer Hong | Meng Luo | Xinyi Wan
Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)

Determining the veracity of atomic claims is an imperative component of many recently proposed fact-checking systems. Many approaches tackle this problem by first retrieving evidence by querying a search engine and then performing classification by providing the evidence set and atomic claim to a large language model, but this process deviates from what a human would do in order to perform the task. Recent work attempted to address this issue by proposing iterative evidence retrieval, allowing for evidence to be collected several times and only when necessary. Continuing along this line of research, we propose a novel claim verification system, called EMULATE, which is designed to better emulate human actions through the use of a multi-agent framework where each agent performs a small part of the larger task, such as ranking search results according to predefined criteria or evaluating webpage content. Extensive experiments on several benchmarks show clear improvements over prior work, demonstrating the efficacy of our new multi-agent framework. Our code is available at https://github.com/qqqube/EMULATE.

2024

pdf bib
NUS-Emo at SemEval-2024 Task 3: Instruction-Tuning LLM for Multimodal Emotion-Cause Analysis in Conversations
Meng Luo | Han Zhang | Shengqiong Wu | Bobo Li | Hong Han | Hao Fei
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper describes the architecture of our system developed for participation in Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving an average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available.