This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In this work, we assess the potential of using synthetic data to train models for content scoring. We generate a parallel corpus of LLM-generated data for the SRA dataset. In our experiments, we train three different kinds of models (Logistic Regression, BERT, SBERT) with this data, examining their respective ability to bridge between generated training data and student-authored test data. We also explore the effects of generating larger volumes of training data than what is available in the original dataset. Overall, we find that training models from LLM-generated data outperforms zero-shot scoring of the test data with an LLM. Still, the fine-tuned models perform much worse than models trained on the original data, largely because the LLM-generated answers often do not to conform to the desired labels. However, once the data is manually relabeled, competitive models can be trained from it. With a similarity-based scoring approach, the relabeled (larger) amount of synthetic answers consistently yields a model that surpasses performance of training on the (limited) amount of answers available in the original dataset.
In this paper, we address generic essay scoring, i.e., the use of training data from one writing task to score data from a different task. We approach this by generalizing a similarity-based essay scoring method (Xie et al., 2022) to learning from texts that are written in response to a mixture of different prompts. In our experiments, we compare within-prompt and cross-prompt performance on two large datasets (ASAP and PERSUADE). We combine different amounts of prompts in the training data and show that our generalized method substantially improves cross-prompt performance, especially when an increasing number of prompts is used to form the training data. In the most extreme case, this leads to more than double the performance, increasing QWK from .26 to .55.
Real-word spelling errors (RWSEs) pose special challenges for detection methods, as they ‘hide’ in the form of another existing word and in many cases even fit in syntactically. We present a modern Transformer-based implementation of earlier probabilistic methods based on confusion sets and show that RWSEs can be detected with a good balance between missing errors and raising too many falsealarms. The confusion sets are dynamically configurable, allowing teachers to easily adjust which errors trigger feedback.
A possible way to save manual grading effort in short answer scoring is to automatically score answers for which the classifier is highly confident. We explore the feasibility of this approach in a high-stakes exam setting, evaluating three different similarity-based scoring methods, where the similarity score is a direct proxy for model confidence. The decision on an appropriate level of confidence should ideally be made before scoring a new prompt. We thus probe to what extent confidence thresholds are consistent across different datasets and prompts. We find that high-confidence thresholds vary on a prompt-to-prompt basis, and that the overall potential of increased performance at a reasonable cost of additional manual effort is limited.
With the recent emergence of powerful visio-linguistic models comes the question of how fine-grained their multi-modal understanding is. This has lead to the release of several probing datasets. Results point towards models having trouble with prepositions and verbs, but being relatively robust when it comes to color.To gauge how deep this understanding goes, we compile a comprehensive probing dataset to systematically test multi-modal alignment around color. We demonstrate how human perception influences descriptions of color and pay special attention to the extent to which this is reflected within the predictions of a visio-linguistic model. Probing a set of models with diverse properties with our benchmark confirms the superiority of models that do not rely on pre-extracted image features, and demonstrates that augmentation with too much noisy pre-training data can produce an inferior model. While the benchmark remains challenging for all models we test, the overall result pattern suggests well-founded alignment of color terms with hues. Analyses do however reveal uncertainty regarding the boundaries between neighboring color terms.
Research probing the language comprehension of visio-linguistic models has gained traction due to their remarkable performance on various tasks. We introduce EViL-Probe, a composite benchmark that processes existing probing datasets into a unified format and reorganizes them based on the linguistic categories they probe. On top of the commonly used negative probes, this benchmark introduces positive probes to more rigorously test the robustness of models. Since the language side alone may introduce a bias models could exploit in solving the probes, we estimate the difficulty of the individual subsets with a language-only baseline. Using the benchmark to probe a set of state-of-the-art visio-linguistic models sheds light on how sensitive they are to the different linguistic categories. Results show that the benchmark is challenging for all models we probe, as their performance is around the chance baseline for many of the categories. The only category all models are able to handle relatively well are nouns. Additionally, models that use a Vision Transformer to process the images are also somewhat robust against probes targeting color and image type. Among these models, our enrichment of EViL-Probe with positive probes helps further discriminate performance, showing BLIP to be the overall best-performing model.
This paper describes our contribution to the PragTag-2023 Shared Task. We describe and compare different approaches based on sentence classification, sentence similarity, and sequence tagging. We find that a BERT-based sentence labeling approach integrating positional information outperforms both sequence tagging and SBERT-based sentence classification. We further provide analyses highlighting the potential of combining different approaches.
Automatically scoring student answers is an important task that is usually solved using instance-based supervised learning. Recently, similarity-based scoring has been proposed as an alternative approach yielding similar perfor- mance. It has hypothetical advantages such as a lower need for annotated training data and better zero-shot performance, both of which are properties that would be highly beneficial when applying content scoring in a realistic classroom setting. In this paper we take a closer look at these alleged advantages by comparing different instance-based and similarity-based methods on multiple data sets in a number of learning curve experiments. We find that both the demand on data and cross-prompt performance is similar, thus not confirming the former two suggested advantages. The by default more straightforward possibility to give feedback based on a similarity-based approach may thus tip the scales in favor of it, although future work is needed to explore this advantage in practice.
When scoring argumentative essays in an educational context, not only the presence or absence of certain argumentative elements but also their quality is important. On the recently published student essay dataset PERSUADE, we first show that the automatic scoring of argument quality benefits from additional information about context, writing prompt and argument type. We then explore the different combinations of three tasks: automated span detection, type and quality prediction. Results show that a multi-task learning approach combining the three tasks outperforms sequential approaches that first learn to segment and then predict the quality/type of a segment.
The dominating paradigm for content scoring is to learn an instance-based model, i.e. to use lexical features derived from the learner answers themselves. An alternative approach that receives much less attention is however to learn a similarity-based model. We introduce an architecture that efficiently learns a similarity model and find that results on the standard ASAP dataset are on par with a BERT-based classification approach.
In this paper, we explore the role of topic information in student essays from an argument mining perspective. We cluster a recently released corpus through topic modeling into prompts and train argument identification models on different data settings. Results show that, given the same amount of training data, prompt-specific training performs better than cross-prompt training. However, the advantage can be overcome by introducing large amounts of cross-prompt training data.
Spellchecking text written by language learners is especially challenging because errors made by learners differ both quantitatively and qualitatively from errors made by already proficient learners. We introduce LeSpell, a multi-lingual (English, German, Italian, and Czech) evaluation data set of spelling mistakes in context that we compiled from seven underlying learner corpora. Our experiments show that existing spellcheckers do not work well with learner data. Thus, we introduce a highly customizable spellchecking component for the DKPro architecture, which improves performance in many settings.
Short-answer scoring is the task of assessing the correctness of a short text given as response to a question that can come from a variety of educational scenarios. As only content, not form, is important, the exact wording including the explicitness of an answer should not matter. However, many state-of-the-art scoring models heavily rely on lexical information, be it word embeddings in a neural network or n-grams in an SVM. Thus, the exact wording of an answer might very well make a difference. We therefore quantify to what extent implicit language phenomena occur in short answer datasets and examine the influence they have on automatic scoring performance. We find that the level of implicitness depends on the individual question, and that some phenomena are very frequent. Resolving implicit wording to explicit formulations indeed tends to improve automatic scoring performance.
Automatic generation of reading comprehension questions is a topic receiving growing interest in the NLP community, but there is currently no consensus on evaluation metrics and many approaches focus on linguistic quality only while ignoring the pedagogic value and appropriateness of questions. This paper overcomes such weaknesses by a new evaluation scheme where questions from the questionnaire are structured in a hierarchical way to avoid confronting human annotators with evaluation measures that do not make sense for a certain question. We show through an annotation study that our scheme can be applied, but that expert annotators with some level of expertise are needed. We also created and evaluated two new evaluation data sets from the biology domain for Basque and German, composed of questions written by people with an educational background, which will be publicly released. Results show that manually generated questions are in general both of higher linguistic as well as pedagogic quality and that among the human generated questions, teacher-generated ones tend to be most useful.