Laura Majer


2025

pdf bib
What Makes You CLIC: Detection of Croatian Clickbait Headliness
Marija Andelic | Dominik Sipek | Laura Majer | Jan Snajder
Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)

Online news outlets operate predominantly on an advertising-based revenue model, compelling journalists to create headlines that are often scandalous, intriguing, and provocative – commonly referred to as clickbait. Automatic detection of clickbait headlines is essential for preserving information quality and reader trust in digital media and requires both contextual understanding and world knowledge. For this task, particularly in less-resourced languages, it remains unclear whether fine-tuned methods or in-context learning (ICL) yield better results. In this paper, we compile clic, a novel dataset for clickbait detection of Croatian news headlines spanning a 20-year period and encompassing mainstream and fringe outlets. Furthermore, we fine-tune the BERTić model on the task of clickbait detection for Croatian and compare its performance to LLM-based ICL methods with prompts both in Croatian and English. Finally, we analyze the linguistic properties of clickbait. We find that nearly half of the analyzed headlines contain clickbait, and that finetuned models deliver better results than general LLMs.

2024

pdf bib
Claim Check-Worthiness Detection: How Well do LLMs Grasp Annotation Guidelines?
Laura Majer | Jan Šnajder
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)

The rising threat of disinformation underscores the need to fully or partially automate the fact-checking process. Identifying text segments requiring fact-checking is known as claim detection (CD) and claim check-worthiness detection (CW), the latter incorporating complex domain-specific criteria of worthiness and often framed as a ranking task. Zero- and few-shot LLM prompting is an attractive option for both tasks, as it bypasses the need for labeled datasets and allows verbalized claim and worthiness criteria to be directly used for prompting. We evaluate the LLMs’ predictive accuracy on five CD/CW datasets from diverse domains, using corresponding annotation guidelines in prompts. We examine two key aspects: (1) how to best distill factuality and worthiness criteria into a prompt, and (2) how much context to provide for each claim. To this end, we experiment with different levels of prompt verbosity and varying amounts of contextual information given to the model. We additionally evaluate the top-performing models with ranking metrics, resembling prioritization done by fact-checkers. Our results show that optimal prompt verbosity varies, meta-data alone adds more performance boost than co-text, and confidence scores can be directly used to produce reliable check-worthiness rankings.

pdf bib
LLMs for Targeted Sentiment in News Headlines: Exploring the Descriptive-Prescriptive Dilemma
Jana Juroš | Laura Majer | Jan Snajder
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

News headlines often evoke sentiment by intentionally portraying entities in particular ways, making targeted sentiment analysis (TSA) of headlines a worthwhile but difficult task. Due to its subjectivity, creating TSA datasets can involve various annotation paradigms, from descriptive to prescriptive, either encouraging or limiting subjectivity. LLMs are a good fit for TSA due to their broad linguistic and world knowledge and in-context learning abilities, yet their performance depends on prompt design. In this paper, we compare the accuracy of state-of-the-art LLMs and fine-tuned encoder models for TSA of news headlines using descriptive and prescriptive datasets across several languages. Exploring the descriptive–prescriptive continuum, we analyze how performance is affected by prompt prescriptiveness, ranging from plain zero-shot to elaborate few-shot prompts. Finally, we evaluate the ability of LLMs to quantify uncertainty via calibration error and comparison to human label variation. We find that LLMs outperform fine-tuned encoders on descriptive datasets, while calibration and F1-score generally improve with increased prescriptiveness, yet the optimal level varies.

2023

pdf bib
Target Two Birds With One SToNe: Entity-Level Sentiment and Tone Analysis in Croatian News Headlines
Ana Barić | Laura Majer | David Dukić | Marijana Grbeša-zenzerović | Jan Snajder
Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)

Sentiment analysis is often used to examine how different actors are portrayed in the media, and analysis of news headlines is of particular interest due to their attention-grabbing role. We address the task of entity-level sentiment analysis from Croatian news headlines. We frame the task as targeted sentiment analysis (TSA), explicitly differentiating between sentiment toward a named entity and the overall tone of the headline. We describe SToNe, a new dataset for this task with sentiment and tone labels. We implement several neural benchmark models, utilizing single- and multi-task training, and show that TSA can benefit from tone information. Finally, we gauge the difficulty of this task by leveraging dataset cartography.