Kritarth Prasad
2025
In-Domain African Languages Translation Using LLMs and Multi-armed Bandits
Pratik Rakesh Singh
|
Kritarth Prasad
|
Mohammadi Zaki
|
Pankaj Wasnik
Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)
Neural Machine Translation (NMT) systems face significant challenges when working with low-resource languages, particularly in domain adaptation tasks. These difficulties arise due to limited training data and suboptimal model generalization, As a result, selecting an optimal model for translation is crucial for achieving strong performance on in-domain data, particularly in scenarios where fine-tuning is not feasible or practical. In this paper, we investigate strategies for selecting the most suitable NMT model for a given domain using bandit-based algorithms, including Upper Confidence Bound, Linear UCB, Neural Linear Bandit, and Thompson Sampling. Our method effectively addresses the resource constraints by facilitating optimal model selection with high confidence. We evaluate the approach across three African languages and domains, demonstrating its robustness and effectiveness in both scenarios where target data is available and where it is absent.
Faster Machine Translation Ensembling with Reinforcement Learning and Competitive Correction
Kritarth Prasad
|
Mohammadi Zaki
|
Pratik Rakesh Singh
|
Pankaj Wasnik
Findings of the Association for Computational Linguistics: NAACL 2025
Ensembling neural machine translation (NMT) models to produce higher-quality translations than the L individual models has been extensively studied. Recent methods typically employ a candidate selection block (CSB) and an encoder-decoder fusion block (FB), requiring inference across all candidate models, leading to significant computational overhead, generally 𝛺(L). This paper introduces SmartGen, a reinforcement learning (RL)-based strategy that improves the CSB by selecting a small, fixed number of candidates and identifying optimal groups to pass to the fusion block for each input sentence. Furthermore, previously, the CSB and FB were trained independently, leading to suboptimal NMT performance. Our DQN-based SmartGen addresses this by using feedback from the FB block as a reward during training. We also resolve a key issue in earlier methods, where candidates were passed to the FB without modification, by introducing a Competitive Correction Block (CCB). Finally, we validate our approach with extensive experiments on English-Hindi translation tasks in both directions as well as English to Chinese and English to German.