Katia P. Sycara
2025
InstructPart: Task-Oriented Part Segmentation with Instruction Reasoning
Zifu Wan
|
Yaqi Xie
|
Ce Zhang
|
Zhiqiu Lin
|
Zihan Wang
|
Simon Stepputtis
|
Deva Ramanan
|
Katia P. Sycara
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large multimodal foundation models, particularly in the domains of language and vision, have significantly advanced various tasks, including robotics, autonomous driving, information retrieval, and grounding. However, many of these models perceive objects as indivisible, overlooking the components that constitute them. Understanding these components and their associated affordances provides valuable insights into an object’s functionality, which is fundamental for performing a wide range of tasks. In this work, we introduce a novel real-world benchmark, InstructPart, comprising hand-labeled part segmentation annotations and task-oriented instructions to evaluate the performance of current models in understanding and executing part-level tasks within everyday contexts. Through our experiments, we demonstrate that task-oriented part segmentation remains a challenging problem, even for state-of-the-art Vision-Language Models (VLMs). In addition to our benchmark, we introduce a simple baseline that achieves a twofold performance improvement through fine-tuning with our dataset. With our dataset and benchmark, we aim to facilitate research on task-oriented part segmentation and enhance the applicability of VLMs across various domains, including robotics, virtual reality, information retrieval, and other related fields. Project website: https://zifuwan.github.io/InstructPart/.
2024
Navigating Noisy Feedback: Enhancing Reinforcement Learning with Error-Prone Language Models
Muhan Lin
|
Shuyang Shi
|
Yue Guo
|
Behdad Chalaki
|
Vaishnav Tadiparthi
|
Ehsan Moradi Pari
|
Simon Stepputtis
|
Joseph Campbell
|
Katia P. Sycara
Findings of the Association for Computational Linguistics: EMNLP 2024
The correct specification of reward models is a well-known challenge in reinforcement learning.Hand-crafted reward functions often lead to inefficient or suboptimal policies and may not be aligned with user values.Reinforcement learning from human feedback is a successful technique that can mitigate such issues, however, the collection of human feedback can be laborious.Recent works have solicited feedback from pre-trained large language models rather than humans to reduce or eliminate human effort, however, these approaches yield poor performance in the presence of hallucination and other errors.This paper studies the advantages and limitations of reinforcement learning from large language model feedback and proposes a simple yet effective method for soliciting and applying feedback as a potential-based shaping function.We theoretically show that inconsistent rankings – which approximate ranking errors – lead to uninformative rewards with our approach. Our method empirically improves convergence speed and policy returns over commonly used baselines even with significant ranking errors, and eliminates the need for complex post-processing of reward functions.
Search
Fix author
Co-authors
- Simon Stepputtis 2
- Joseph P. Campbell 1
- Behdad Chalaki 1
- Yue Guo 1
- Muhan Lin 1
- show all...