Katarina Boland


2025

pdf bib
Limited Generalizability in Argument Mining: State-Of-The-Art Models Learn Datasets, Not Arguments
Marc Feger | Katarina Boland | Stefan Dietze
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Identifying arguments is a necessary prerequisite for various tasks in automated discourse analysis, particularly within contexts such as political debates, online discussions, and scientific reasoning. In addition to theoretical advances in understanding the constitution of arguments, a significant body of research has emerged around practical argument mining, supported by a growing number of publicly available datasets. On these benchmarks, BERT-like transformers have consistently performed best, reinforcing the belief that such models are broadly applicable across diverse contexts of debate. This study offers the first large-scale re-evaluation of such state-of-the-art models, with a specific focus on their ability to generalize in identifying arguments. We evaluate four transformers, three standard and one enhanced with contrastive pre-training for better generalization, on 17 English sentence-level datasets as most relevant to the task. Our findings show that, to varying degrees, these models tend to rely on lexical shortcuts tied to content words, suggesting that apparent progress may often be driven by dataset-specific cues rather than true task alignment. While the models achieve strong results on familiar benchmarks, their performance drops markedly when applied to unseen datasets. Nonetheless, incorporating both task-specific pre-training and joint benchmark training proves effective in enhancing both robustness and generalization.

2020

pdf bib
Can Knowledge Graph Embeddings Tell Us What Fact-checked Claims Are About?
Valentina Beretta | Sébastien Harispe | Katarina Boland | Luke Lo Seen | Konstantin Todorov | Andon Tchechmedjiev
Proceedings of the First Workshop on Insights from Negative Results in NLP

The web offers a wealth of discourse data that help researchers from various fields analyze debates about current societal issues and gauge the effects on society of important phenomena such as misinformation spread. Such analyses often revolve around claims made by people about a given topic of interest. Fact-checking portals offer partially structured information that can assist such analysis. However, exploiting the network structure of such online discourse data is as of yet under-explored. We study the effectiveness of using neural-graph embedding features for claim topic prediction and their complementarity with text embeddings. We show that graph embeddings are modestly complementary with text embeddings, but the low performance of graph embedding features alone indicate that the model fails to capture topological features pertinent of the topic prediction task.