Jennifer Pan


2025

pdf bib
Biased LLMs can Influence Political Decision-Making
Jillian Fisher | Shangbin Feng | Robert Aron | Thomas Richardson | Yejin Choi | Daniel W Fisher | Jennifer Pan | Yulia Tsvetkov | Katharina Reinecke
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As modern large language models (LLMs) become integral to everyday tasks, concerns about their inherent biases and their potential impact on human decision-making have emerged. While bias in models are well-documented, less is known about how these biases influence human decisions. This paper presents two interactive experiments investigating the effects of partisan bias in LLMs on political opinions and decision-making. Participants interacted freely with either a biased liberal, biased conservative, or unbiased control model while completing these tasks. We found that participants exposed to partisan biased models were significantly more likely to adopt opinions and make decisions which matched the LLM’s bias. Even more surprising, this influence was seen when the model bias and personal political partisanship of the participant were opposite. However, we also discovered that prior knowledge of AI was weakly correlated with a reduction of the impact of the bias, highlighting the possible importance of AI education for robust mitigation of bias effects. Our findings not only highlight the critical effects of interacting with biased LLMs and its ability to impact public discourse and political conduct, but also highlights potential techniques for mitigating these risks in the future.

2018

pdf bib
Framing and Agenda-setting in Russian News: a Computational Analysis of Intricate Political Strategies
Anjalie Field | Doron Kliger | Shuly Wintner | Jennifer Pan | Dan Jurafsky | Yulia Tsvetkov
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Amidst growing concern over media manipulation, NLP attention has focused on overt strategies like censorship and “fake news”. Here, we draw on two concepts from political science literature to explore subtler strategies for government media manipulation: agenda-setting (selecting what topics to cover) and framing (deciding how topics are covered). We analyze 13 years (100K articles) of the Russian newspaper Izvestia and identify a strategy of distraction: articles mention the U.S. more frequently in the month directly following an economic downturn in Russia. We introduce embedding-based methods for cross-lingually projecting English frames to Russian, and discover that these articles emphasize U.S. moral failings and threats to the U.S. Our work offers new ways to identify subtle media manipulation strategies at the intersection of agenda-setting and framing.