Huichi Zhou


2025

pdf bib
DiffuseDef: Improved Robustness to Adversarial Attacks via Iterative Denoising
Zhenhao Li | Huichi Zhou | Marek Rei | Lucia Specia
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained language models have significantly advanced performance across various natural language processing tasks. However, adversarial attacks continue to pose a critical challenge to system built using these models, as they can be exploited with carefully crafted adversarial texts. Inspired by the ability of diffusion models to predict and reduce noise in computer vision, we propose a novel and flexible adversarial defense method for language classification tasks, DiffuseDef, which incorporates a diffusion layer as a denoiser between the encoder and the classifier. The diffusion layer is trained on top of the existing classifier, ensuring seamless integration with any model in a plug-and-play manner. During inference, the adversarial hidden state is first combined with sampled noise, then denoised iteratively and finally ensembled to produce a robust text representation. By integrating adversarial training, denoising, and ensembling techniques, we show that DiffuseDef improves over existing adversarial defense methods and achieves state-of-the-art performance against common black-box and white-box adversarial attacks.

pdf bib
Verifiable Format Control for Large Language Model Generations
Zhaoyang Wang | Jinqi Jiang | Huichi Zhou | Wenhao Zheng | Xuchao Zhang | Chetan Bansal | Huaxiu Yao
Findings of the Association for Computational Linguistics: NAACL 2025

Recent Large Language Models (LLMs) have demonstrated satisfying general instruction following ability. However, small LLMs with about 7B parameters still struggle fine-grained format following (e.g., JSON format), which seriously hinder the advancements of their applications. Most existing methods focus on benchmarking general instruction following while overlook how to improve the specific format following ability for small LLMs. Besides, these methods often rely on evaluations based on advanced LLMs (e.g., GPT-4), which can introduce the intrinsic bias of LLMs and be costly due to the API calls. In this paper, we first curate a fully verifiable format following dataset VFF. In contrast to existing works often adopting external LLMs for instruction-following validations, every sample of VFF can be easily validated with a Python function. Further, we propose to leverage this verifiable feature to synthesize massive data for progressively training small LLMs, in order to improve their format following abilities. Experimental results highlight the prevalent limitations in the format following capabilities of 7B level open-source LLMs and demonstrate the effectiveness of our method in enhancing this essential ability.

2024

pdf bib
Evaluating the Validity of Word-level Adversarial Attacks with Large Language Models
Huichi Zhou | Zhaoyang Wang | Hongtao Wang | Dongping Chen | Wenhan Mu | Fangyuan Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Deep neural networks exhibit vulnerability to word-level adversarial attacks in natural language processing. Most of these attack methods adopt synonymous substitutions to perturb original samples for crafting adversarial examples while attempting to maintain semantic consistency with the originals. Some of them claim that they could achieve over 90% attack success rate, thereby raising serious safety concerns. However, our investigation reveals that many purportedly successful adversarial examples are actually invalid due to significant changes in semantic meanings compared to their originals. Even when equipped with semantic constraints such as BERTScore, existing attack methods can generate up to 87.9% invalid adversarial examples. Building on this insight, we first curate a 13K dataset for adversarial validity evaluation with the help of GPT-4. Then, an open-source large language model is fine-tuned to offer an interpretable validity score for assessing the semantic consistency between original and adversarial examples. Finally, this validity score can serve as a guide for existing adversarial attack methods to generate valid adversarial examples. Comprehensive experiments demonstrate the effectiveness of our method in evaluating and refining the quality of adversarial examples.