Heydar Soudani
2025
Why Uncertainty Estimation Methods Fall Short in RAG: An Axiomatic Analysis
Heydar Soudani
|
Evangelos Kanoulas
|
Faegheh Hasibi
Findings of the Association for Computational Linguistics: ACL 2025
Large Language Models (LLMs) are valued for their strong performance across various tasks, but they also produce inaccurate or misleading outputs. Uncertainty Estimation (UE) quantifies the model’s confidence and helps users assess response reliability. However, existing UE methods have not been thoroughly examined in scenarios like Retrieval-Augmented Generation (RAG), where the input prompt includes non-parametric knowledge. This paper shows that current UE methods cannot reliably estimate the correctness of LLM responses in the RAG setting. We propose an axiomatic framework to identify deficiencies in existing UE methods. Our framework introduces five constraints that an effective UE method should meet after incorporating retrieved documents into the LLM’s prompt. Experimental results reveal that no existing UE method fully satisfies all the axioms, explaining their suboptimal performance in RAG. We further introduce a simple yet effective calibration function based on our framework, which not only satisfies more axioms than baseline methods but also improves the correlation between uncertainty estimates and correctness.
2022
Persian Natural Language Inference: A Meta-learning Approach
Heydar Soudani
|
Mohammad Hassan Mojab
|
Hamid Beigy
Proceedings of the 29th International Conference on Computational Linguistics
Incorporating information from other languages can improve the results of tasks in low-resource languages. A powerful method of building functional natural language processing systems for low-resource languages is to combine multilingual pre-trained representations with cross-lingual transfer learning. In general, however, shared representations are learned separately, either across tasks or across languages. This paper proposes a meta-learning approach for inferring natural language in Persian. Alternately, meta-learning uses different task information (such as QA in Persian) or other language information (such as natural language inference in English). Also, we investigate the role of task augmentation strategy for forming additional high-quality tasks. We evaluate the proposed method using four languages and an auxiliary task. Compared to the baseline approach, the proposed model consistently outperforms it, improving accuracy by roughly six percent. We also examine the effect of finding appropriate initial parameters using zero-shot evaluation and CCA similarity.