Felipe Urrutia


2025

pdf bib
Unsupervised Automatic Short Answer Grading and Essay Scoring: A Weakly Supervised Explainable Approach
Felipe Urrutia | Cristian Buc | Roberto Araya | Valentin Barriere
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)

Automatic Short Answer Grading (ASAG) refers to automated scoring of open-ended textual responses to specific questions, both in natural language form. In this paper, we propose a method to tackle this task in a setting where annotated data is unavailable. Crucially, our method is competitive with the state-of-the-art while being lighter and interpretable. We crafted a unique dataset containing a highly diverse set of questions and a small amount of answers to these questions; making it more challenging compared to previous tasks. Our method uses weak labels generated from other methods proven to be effective in this task, which are then used to train a white-box (linear) regression based on a few interpretable features. The latter are extracted expert features and learned representations that are interpretable per se and aligned with manual labeling. We show the potential of our method by evaluating it on a small annotated portion of the dataset, and demonstrate that its ability compares with that of strong baselines and state-of-the-art methods, comprising an LLM that in contrast to our method comes with a high computational price and an opaque reasoning process. We further validate our model on a public Automatic Essay Scoring dataset in English, and obtained competitive results compared to other unsupervised baselines, outperforming the LLM. To gain further insights of our method, we conducted an interpretability analysis revealing sparse weights in our linear regression model, and alignment between our features and human ratings.

2023

pdf bib
Deep Natural Language Feature Learning for Interpretable Prediction
Felipe Urrutia | Cristian Calderon | Valentin Barriere
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We propose a general method to break down a main complex task into a set of intermediary easier sub-tasks, which are formulated in natural language as binary questions related to the final target task. Our method allows for representing each example by a vector consisting of the answers to these questions. We call this representation Natural Language Learned Features (NLLF). NLLF is generated by a small transformer language model (e.g., BERT) that has been trained in a Natural Language Inference (NLI) fashion, using weak labels automatically obtained from a Large Language Model (LLM). We show that the LLM normally struggles for the main task using in-context learning, but can handle these easiest subtasks and produce useful weak labels to train a BERT. The NLI-like training of the BERT allows for tackling zero-shot inference with any binary question, and not necessarily the ones seen during the training. We show that this NLLF vector not only helps to reach better performances by enhancing any classifier, but that it can be used as input of an easy-to-interpret machine learning model like a decision tree. This decision tree is interpretable but also reaches high performances, surpassing those of a pre-trained transformer in some cases. We have successfully applied this method to two completely different tasks: detecting incoherence in students’ answers to open-ended mathematics exam questions, and screening abstracts for a systematic literature review of scientific papers on climate change and agroecology.