Evgeny Burnaev


2025

pdf bib
GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs
Maxim Zhelnin | Viktor Moskvoretskii | Egor Shvetsov | Maria Krylova | Venediktov Egor | Zuev Aleksandr | Evgeny Burnaev
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Parameter Efficient Fine-Tuning (PEFT) methods have gained popularity and democratized the usage of Large Language Models (LLMs). Recent studies have shown that a small subset of weights significantly impacts performance. Based on this observation, we introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW). Our method updates only salient columns, while injecting Gaussian noise into non-salient ones. To identify these columns, we developed a generalized sensitivity metric that extends and unifies metrics from previous studies. Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget. Moreover, GIFT-SW offers practical advantages to recover performance of models subjected to mixed-precision quantization with keeping salient weights in full precision.

pdf bib
Feature-Level Insights into Artificial Text Detection with Sparse Autoencoders
Kristian Kuznetsov | Laida Kushnareva | Anton Razzhigaev | Polina Druzhinina | Anastasia Voznyuk | Irina Piontkovskaya | Evgeny Burnaev | Serguei Barannikov
Findings of the Association for Computational Linguistics: ACL 2025

Artificial Text Detection (ATD) is becoming increasingly important with the rise of advanced Large Language Models (LLMs). Despite numerous efforts, no single algorithm performs consistently well across different types of unseen text or guarantees effective generalization to new LLMs. Interpretability plays a crucial role in achieving this goal. In this study, we enhance ATD interpretability by using Sparse Autoencoders (SAE) to extract features from Gemma-2-2B’s residual stream. We identify both interpretable and efficient features, analyzing their semantics and relevance through domain- and model-specific statistics, a steering approach, and manual or LLM-based interpretation of obtained features. Our methods offer valuable insights into how texts from various models differ from human-written content. We show that modern LLMs have a distinct writing style, especially in information-dense domains, even though they can produce human-like outputs with personalized prompts. The code for this paper is available at https://github.com/pyashy/SAE_ATD.

2022

pdf bib
Acceptability Judgements via Examining the Topology of Attention Maps
Daniil Cherniavskii | Eduard Tulchinskii | Vladislav Mikhailov | Irina Proskurina | Laida Kushnareva | Ekaterina Artemova | Serguei Barannikov | Irina Piontkovskaya | Dmitri Piontkovski | Evgeny Burnaev
Findings of the Association for Computational Linguistics: EMNLP 2022

The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by 8%-24% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena. We publicly release the code and other materials used in the experiments.

2021

pdf bib
Artificial Text Detection via Examining the Topology of Attention Maps
Laida Kushnareva | Daniil Cherniavskii | Vladislav Mikhailov | Ekaterina Artemova | Serguei Barannikov | Alexander Bernstein | Irina Piontkovskaya | Dmitri Piontkovski | Evgeny Burnaev
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The impressive capabilities of recent generative models to create texts that are challenging to distinguish from the human-written ones can be misused for generating fake news, product reviews, and even abusive content. Despite the prominent performance of existing methods for artificial text detection, they still lack interpretability and robustness towards unseen models. To this end, we propose three novel types of interpretable topological features for this task based on Topological Data Analysis (TDA) which is currently understudied in the field of NLP. We empirically show that the features derived from the BERT model outperform count- and neural-based baselines up to 10% on three common datasets, and tend to be the most robust towards unseen GPT-style generation models as opposed to existing methods. The probing analysis of the features reveals their sensitivity to the surface and syntactic properties. The results demonstrate that TDA is a promising line with respect to NLP tasks, specifically the ones that incorporate surface and structural information.