Duong Ngoc Yen


2025

pdf bib
Beyond In-Context Learning: Aligning Long-form Generation of Large Language Models via Task-Inherent Attribute Guidelines
Do Xuan Long | Duong Ngoc Yen | Do Xuan Trong | Anh Tuan Luu | Kenji Kawaguchi | Shafiq Joty | Min-Yen Kan | Nancy F. Chen
Findings of the Association for Computational Linguistics: ACL 2025

In-context learning (ICL) is an important yet not fully understood ability of pre-trained large language models (LLMs). It can greatly enhance task performance using a few examples, termed demonstrations, without fine-tuning. Although effective in question answering, ICL often underperforms in long-form generation tasks such as summarization. Under appropriately realistic assumptions, we empirically and theoretically show that ICL demonstrations alone are insufficient to teach LLMs the task’s language and format distributions for generation. We argue for explicit exposure to the task distributions and hypothesize that defining them by prompting enhances model performance. To this end, we present LongGuide, which efficiently generates two parallel streams of guidelines capturing task language and format properties: (i) Metric Guidelines (MGs) that instruct models to optimize self-evaluated metrics; and (ii) Output Constraint Guidelines (OCGs) that constrain generation at both token and sentence levels. LongGuide automatically selects the best combination of guidelines, improving both strong open- and closed-source LLMs by over 5% in both zero- and few-shot settings. We show that LongGuide is generalizable, learnable by weak models to enhance strong ones, and integrates synergistically with automatic prompt optimizers.

2024

pdf bib
Multi-expert Prompting Improves Reliability, Safety and Usefulness of Large Language Models
Do Xuan Long | Duong Ngoc Yen | Anh Tuan Luu | Kenji Kawaguchi | Min-Yen Kan | Nancy F. Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We present Multi-expert Prompting, a novel enhancement of ExpertPrompting (Xu et al., 2023), designed to improve the large language model (LLM) generation. Specifically, it guides an LLM to fulfill an input instruction by simulating multiple experts, aggregating their responses, and selecting the best among individual and aggregated responses. This process is performed in a single chain of thoughts through our seven carefully designed subtasks derived from the Nominal Group Technique (Ven and Delbecq, 1974), a well-established decision-making framework. Our evaluations demonstrate that Multi-expert Prompting significantly outperforms ExpertPrompting and comparable baselines in enhancing the truthfulness, factuality, informativeness, and usefulness of responses while reducing toxicity and hurtfulness. It further achieves state-of-the-art truthfulness by outperforming the best baseline by 8.69% with ChatGPT. Multi-expert Prompting is efficient, explainable, and highly adaptable to diverse scenarios, eliminating the need for manual prompt construction.