Cristian Enrique Munoz Villalobos


2025

pdf bib
LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries
Zekun Wu | Seonglae Cho | Umar Mohammed | Cristian Enrique Munoz Villalobos | Kleyton Da Costa | Xin Guan | Theo King | Ze Wang | Emre Kazim | Adriano Koshiyama
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Open-source AI libraries are foundational to modern AI systems, yet they present significant, underexamined risks spanning security, licensing, maintenance, supply chain integrity, and regulatory compliance. We introduce LibVulnWatch, a system that leverages recent advances in large language models and agentic workflows to perform deep, evidence-based evaluations of these libraries. Built on a graph-based orchestration of specialized agents, the framework extracts, verifies, and quantifies risk using information from repositories, documentation, and vulnerability databases. LibVulnWatch produces reproducible, governance-aligned scores across five critical domains, publishing results to a public leaderboard for ongoing ecosystem monitoring. Applied to 20 widely used libraries—including ML frameworks, LLM inference engines, and agent orchestration tools—our approach covers up to 88% of OpenSSF Scorecard checks while surfacing up to 19 additional risks per library, such as critical RCE vulnerabilities, missing SBOMs, and regulatory gaps. By integrating advanced language technologies with the practical demands of software risk assessment, this work demonstrates a scalable, transparent mechanism for continuous supply chain evaluation and informed library selection.

pdf bib
From Text to Emoji: How PEFT-Driven Personality Manipulation Unleashes the Emoji Potential in LLMs
Navya Jain | Zekun Wu | Cristian Enrique Munoz Villalobos | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Emre Kazim | Philip Colin Treleaven
Findings of the Association for Computational Linguistics: NAACL 2025

The manipulation of the personality traits of large language models (LLMs) has emerged as a key area of research. Methods like prompt-based In-Context Knowledge Editing (IKE) and gradient-based Model Editor Networks (MEND) have been explored but show irregularity and variability; IKE depends on the prompt, leading to variability and sensitivity, while MEND yields inconsistent and gibberish outputs. To address this, we employed Opinion QA Based Parameter-Efficient Fine-Tuning (PEFT), specifically Quantized Low-Rank Adaptation (QLoRA), to manipulate the Big Five personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. After PEFT, models such as Mistral-7B-Instruct and LLaMA-2-7B-chat showed a latent behaviour by generating emojis for certain traits, despite no emojis being present in the PEFT data. For instance, LLaMA-2-7B-chat generated emojis in 99.5% of extraversion-related test instances, while Mistral-7B-Instruct did so in 92.5% of openness-related test instances. ICL Explainability analysis indicated that the LLMs used emojis intentionally to express these traits. Mechanistic Interpretability analysis showed that this latent behaviour of LLMs could be traced to specific neurons that became activated or amplified after PEFT. This paper provides a number of novel contributions. First, introducing an Opinion QA dataset for PEFT-driven personality manipulation; second, developing metric models to benchmark LLM personality traits; third, demonstrating PEFT’s superiority over IKE in personality manipulation; and finally, analysing and validating emoji usage through explainability methods such as Mechanistic Interpretability and In-context learning Explainability methods.