This study examines vulnerabilities in transformer-based automated short-answer grading systems used in medical education, with a focus on how these systems can be manipulated through adversarial gaming strategies. Our research identifies three main types of gaming strategies that exploit the system’s weaknesses, potentially leading to false positives. To counteract these vulnerabilities, we implement several adversarial training methods designed to enhance the system’s robustness. Our results indicate that these methods significantly reduce the susceptibility of grading systems to such manipulations, especially when combined with ensemble techniques like majority voting and Ridge regression, which further improve the system’s defense against sophisticated adversarial inputs. Additionally, employing large language models suchasGPT-4with varied prompting techniques has shown promise in recognizing and scoring gaming strategies effectively. The findings underscore the importance of continuous improvements in AI-driven educational tools to ensure their reliability and fairness in high-stakes settings.
This paper reports findings from the First Shared Task on Automated Prediction of Difficulty and Response Time for Multiple-Choice Questions. The task was organized as part of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA’24), held in conjunction with NAACL 2024, and called upon the research community to contribute solutions to the problem of modeling difficulty and response time for clinical multiple-choice questions (MCQs). A set of 667 previously used and now retired MCQs from the United States Medical Licensing Examination (USMLE®) and their corresponding difficulties and mean response times were made available for experimentation. A total of 17 teams submitted solutions and 12 teams submitted system report papers describing their approaches. This paper summarizes the findings from the shared task and analyzes the main approaches proposed by the participants.
This paper brings together approaches from the fields of NLP and psychometric measurement to address the problem of predicting examinee proficiency from responses to short-answer questions (SAQs). While previous approaches train on manually labeled data to predict the human-ratings assigned to SAQ responses, the approach presented here models examinee proficiency directly and does not require manually labeled data to train on. We use data from a large medical exam where experimental SAQ items are embedded alongside 106 scored multiple-choice questions (MCQs). First, the latent trait of examinee proficiency is measured using the scored MCQs and then a model is trained on the experimental SAQ responses as input, aiming to predict proficiency as its target variable. The predicted value is then used as a “score” for the SAQ response and evaluated in terms of its contribution to the precision of proficiency estimation.