This paper presents our approach to the ArchEHR shared task on generating answers to real-world patient questions grounded in evidence from electronic health records (EHRs). We investigate the zero-shot capabilities of general-purpose, domain-agnostic large language models (LLMs) in two key aspects: identifying essential supporting evidence and producing concise, coherent answers. To this aim, we propose a two-stage pipeline: (1) evidence identification via test-time scaling (TTS) and (2) generating the final answer conditioned on selected evidences from the previous stage.Our approach leverages high-temperature sampling to generate multiple outputs during the evidence selection phase. This TTS-based approach effectively explore more potential evidences which results in significant improvement of the factuality score of the answers.