Andrea Pedrotti


2025

pdf bib
How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian
Andrea Pedrotti | Giulia Rambelli | Caterina Villani | Marianna Bolognesi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then leverage these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research.

pdf bib
Stress-testing Machine Generated Text Detection: Shifting Language Models Writing Style to Fool Detectors
Andrea Pedrotti | Michele Papucci | Cristiano Ciaccio | Alessio Miaschi | Giovanni Puccetti | Felice Dell’Orletta | Andrea Esuli
Findings of the Association for Computational Linguistics: ACL 2025

Recent advancements in Generative AI and Large Language Models (LLMs) have enabled the creation of highly realistic synthetic content, raising concerns about the potential for malicious use, such as misinformation and manipulation. Moreover, detecting Machine-Generated Text (MGT) remains challenging due to the lack of robust benchmarks that assess generalization to real-world scenarios. In this work, we evaluate the resilience of state-of-the-art MGT detectors (e.g., Mage, Radar, LLM-DetectAIve) to linguistically informed adversarial attacks. We develop a pipeline that fine-tunes language models using Direct Preference Optimization (DPO) to shift the MGT style toward human-written text (HWT), obtaining generations more challenging to detect by current models. Additionally, we analyze the linguistic shifts induced by the alignment and how detectors rely on “linguistic shortcuts” to detect texts. Our results show that detectors can be easily fooled with relatively few examples, resulting in a significant drop in detecting performances. This highlights the importance of improving detection methods and making them robust to unseen in-domain texts. We release code, models, and data to support future research on more robust MGT detection benchmarks.