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Abstract 

Full-Parsing systems able to analyze sentences robustly and 
completely at an appropriate accuracy can be useful in many 
computer applications like information retrieval and machine 
translation systems. Increasing the domain of locality by using 
tree-adjoining-grammars (TAG) caused some researchers to use it 
as a modeling formalism in their language application. But 
parsing with a rich grammar like TAG faces two main obstacles: 
low parsing speed and a lot of ambiguous syntactical parses. In 
order to decrease the parse time and these ambiguities, we use an 
idea of combining statistical chunker based on TAG formalism, 
with a heuristically rule-based search method to achieve the full 
parses. The partial parses induced from statistical chunker are 
basically resulted from a system named supertagger, and are 
followed by two different phases: error detection and error 
correction, which in each phase, different completion heuristics 
apply on the partial parses. The experiments on Penn Treebank 
show that by using a trained probability model considerable 
improvement in full-parsing rate is achieved. 
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1. Introduction 
In many applications like information retrieval and Rule-
based machine translation systems, accurate deep parse 
structure of a sentence is required; hence a lot of research is 
being done on introducing methods to produce deep 
hierarchical syntactical structure of a given natural 
language sentence [6]. Over the last decade, there has been 
a great increase in the performance of parsers. Current 
parsers achieve to a score of about 90% when measuring 
just the accuracy of choosing these dependencies [4, 5 and 
7]. The choice of formalism does not change the parsers’ 
accuracy significantly, because in all approaches word-
word dependencies are used as the only underlying 
information. But because of the inherent ambiguity in the 
natural languages, achieving to a full parses of a sentence is 
a big challenges.  
Tree-adjoining-grammars (TAG) have some specific 
features, which are interested by researchers to be used as 
modeling formalisms in their language application. The 
parsing methods based on this formalism involve different 
problems such as a lot of ambiguities and low parsing 

speed. One of the main parsing algorithms based on TAG 
formalism is presented by Van Noord [10] which runs in 
O(n6) time complexity. This complexity in a real-size 
grammar (like XTAG [9]) is not acceptable, especially for 
a more complicated system like information retrieval and 
machine translation systems. Also, because of the 
ambiguities in the resulted parses, the output of this 
algorithm must be disambiguated by another approach.  
To overcome the mentioned problems, we use an 
alternative approach which is based on statistical partial 
parsers. One of the partial parser systems which alleviate 
the TAG formalism problems in time complexity and 
ambiguity is named supertagging, proposed by (Bangalore 
and Joshi [2]). The idea behind supertagging is to extend 
the notion of “tag” from a part of speech to a tag that 
represents rich syntactic information. Each supertag can be 
thought as an element in TAG formalism.  
They also introduced “lightweight” parsing which follows 
the supertagging. If words in a string can be tagged with 
this rich syntactic information, then Bangalore and Joshi 
claim, the remaining step of determining the actual 
syntactic structure is trivial [2]. They propose a 
“lightweight dependency parser” (LDA) which is a 
heuristically-driven, very simple program that creates a 
dependency structure from the supertags of the words. 
While the supertagging only requires a notion of 
syntactically relevant features, the stage of determining a 
syntactic structure requires a grammar that uses these 
syntactically relevant features. Given the correct supertags, 
LDA performs with an unlabeled accuracy of about 95%.  
Although supertagging is a worthwhile notion pursuing the 
full-parsing, but approaching to a full-parse by the 
proposed lightweight parser has a major obstacle. 
Bangalore announced the accuracy of supertagging to be 
about 92% based on the experiments done on Penn 
Treebank [1]. This accuracy is not satisfiable to generate a 
complete deep structure of the sentence by using 
lightweight dependency analyzer. In a sentence with 15-
words length, LDA parser determines the correct full-parse 
of the sentence with the probability about 95% * (0.92)15 = 
27.5%. For longer sentences, lower accuracy has been 
achieved. Nasr and Rambow try to improve the accuracy 
by changing the heuristic dependency linker with a non-
lexical chart parser [8]. Like the original supertagger, their 
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method still has no access to lexical information and only 
information about the supertags is combined with a chart 
parser.  They cut the error rate of the heuristic LDA by 
more than half.  
In this paper, we present a full-parsing method by 
combining different heuristics with lightweight shallow 
parser. Our approach is still in the spirit of Bangalore’s 
work in the sense that lexical information is only used 
during supertagging. The idea of this paper is based on 
finding the erroneous supertags which are most probable to 
be wrongly assigned, and then replacing them with proper 
candidates.  

2. Full Parsing 
Although full parsing based on fully correct supertags is 
very time-efficient [8], but acquiring the fully correct 
supertagging itself is the main obstacle. The probability of 
assigning correct supertag set S={s1,s2,…,sn} to all words 
of a sentence W={w1,w2,…,wn} is equal to product of the 
probability of correct assigning a single supertag si to i-th 
word wi (i.e. p(si | wi) ). Based on the experiments done by 
Bangalore, the probability p(si | wi) is equal to 92.2%. So 
full parsing probability by linking all supertags resulted 
from supertagging process for a sentence with 15 words 
length is equal almost be 29.5% and with 25 words near to 
13.1%. To overcome this problem, n-best supertagging that 
assign n-best supertags to each word was proposed by [1]. 
Based on this approach, by setting n = 3, supertagging 
correctness increased to 97.1% and accordingly the rate of 
fully-parsing for whole words in a sentence improved 
efficiently. (e.g. 74.5% for sentences with 15 words length 
and 64.3% for sentences with 25 words length). But using 
n-best supertags followed by lightweight analyzer is equal 
to find a combination of these supertags which satisfies all 
available syntactical constraints on TAG. For 3-best 
supertagger in 15 words length sentence, there are 315 = 
14,348,907 combinations which should be checked in order 
to choose the correct combination. In [8] a dynamic 
programming method to resolve this complexity is used.  
This problem can be seen as a search problem in the state 
space of all supertags assigned to the words of the 
sentence. The initial state is a combination of those tags 
which are assigned by supertagger and the goal states are 
those which LDA succeed to make a fully dependency 
linkage between the supertags and hence in those states 
full-syntactic structure of the sentence is generated. Hill-
climbing approach is chosen for search method and the 
accuracy of LDA is calculated as a heuristic performance 
measure of problem.  

3. Search in the Supertag State Space 
Same as other local search problems, the search can be 
divided into two distinct phases: error detection and 

correction. In fact, instead of associating n-best supertag to 
every word of the sentence, the most probable erroneous 
supertags resulted from n-best supertagging are detected 
and substituted with proper alternatives which are proposed 
by an error correction algorithm.  
In each non-goal state (i.e. partial parse), error nodes are 
supertags that are wrongly assigned and therefore they are 
the cause of preventing LDA to produce exactly one 
dependency diagram as the correct full parse tree of the 
sentence. The result of LDA is a dependency diagram 
which links all supertags based on its syntactical behavior 
[1]. Four our experiments, we gathered 341 sentences, 
which are failed to be parsed by LDA, and analyzed the 
failing reasons. In the case of failing LDA to generate the 
full connected structure, one of the three cases may happen. 
These cases are shown in Table 1. As it’s shown in the 
table, different heuristics for detecting the faulty nodes are 
demonstrated too. These heuristics show the supertags 
which are most probable to be wrong and should to be 
replaced with proper candidates.  
Table 1. The cases in which supertagger fails to generate the 

full syntactic structure 

Case 1 

The LDA output diagram is not fully connected 
graph and it contains multiple partial graphs. In 
this case, substitution slots of some supertags 
are not filled by other tags. From the total 341 
faulty test sentences, this case appears in 172 
sentences, that is about 50% of all corpus fails 
to be parsed because of this problem.  
 

Proposed 
faulty 

nodes  in 
case 1 

The partial trees’ root is mostly an erroneous 
node, which its supertag should be substituted 
to better one (i.e. should to replace with another 
supertag which contains more substitution slots 
in order to make a link with other partial trees). 
Changing this node with proper one could 
correct 150 sentences from the total 172 faulty 
sentences of this case. 
 

Case 2 

Supertags of some words do not participate in 
the dependency diagram and so some child 
nodes are not included in its parent diagram. 
Either footnode or substitution slots are 
required to make a link between the orphan 
child and parent node. This case appears in 
more than 30% of test sentences.  
 

Proposed 
faulty 

nodes  in 
case 2 

The root node of trees that some of their 
children are missed has a large potential to be 
wrongly assigned supertag. These missed 
children can be seen as slots that are not filled. 
In our experiments, the total faulty sentences of 
this case have been corrected by changing this 
node. 
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Case 3 

In the 15% of mentioned faulty test sentences, 
the LDA output diagram has cycles in its 
dependencies and therefore is not a valid 
dependency structure diagram.  
 

Proposed 
faulty 

nodes  in 
case 3 

In the case of existence any loop in the 
diagram, the verb nodes are usually ambiguous 
and have a large potential to be erroneous. By 
using this heuristic, the full parse structure of 
70% of all unparsed sentences of case 3 is 
correctly acquired. 

 
In each of the mentioned cases, the noisy nodes are 
detected and then replaced with some other supertags 
which will be proposed by other heuristics. So, the whole 
search for finding the full-parse can be summarized as the 
follows: 
1- Use supertagger to achieve partial parse  
2- Detect the full linkage by using LDA 
3- In the case of using full linkage, stop 
4- In the case of failure the full parses, 

check if one of the three mentioned cases 
happened 

5- In the case of happening one of the 
mentioned cases, replace the faulty node 
proposed by error detection heuristic 
with a better candidate 

6- Go to step 2 

4. Error Correction Heuristics 
After detecting the erroneous nodes, a list of proper 
candidates required to be substituted with the erroneous 
supertags. Three heuristics are presented here to propose 
the candidates to be replaced with the erroneous nodes, 
where each of which improves the full parsing rate and 
speed. These heuristics are as follows: 

4.1 N-Best Heuristic 
In this heuristic, the outputs of n-best supertagger are used 
as successor candidates. The n-best supertagger is a 
modified version of simple supertagger which proposes n 
supertags for each word of the sentence. Suppose that m is 
the number of faulty nodes which are detected by the 
previously mentioned heuristics and n is the number of n-
best candidates which are predicted by supertagger, so 
finding the best combination in this space involves O(mn) 
cases. Breath first search (BFS) strategy is used to find the 
best match in this state space. That is for each node; all its 
successor nodes are generated first and then are evaluated 
by LDA as an evaluation function. The search terminated 
when the full parse structure of the input sentence is 
acquired.  

4.2 XTAG-Based Heuristic 
In this heuristic, a human-crafted grammar based on tree-
adjoining formalism, named XTAG, is used. XTAG is an 

on-going project to develop a wide-coverage grammar for 
English using TAG formalism [9]. XTAG uses Lexicalized 
TAG, where each lexical item is associated to many 
elementary trees which can satisfy its structural constraints. 
In this heuristic, these associations between each lexical 
item and elementary trees are used as candidates to be 
replaced with the detected faulty nodes.  
When an error node is detected, other TAGs, which are 
associated to those nodes’ lexical in the XTAG grammar 
bank, are chosen as a substitution list. XTAG grammar 
contains 1226 elementary trees which are categorized into 
26 different family trees, and each lexical item especially 
verb, associated to more than 10 elementary trees. Thus, 
the candidate list to be substituted with erroneous nodes in 
this method is much larger than previous one. Therefore, 
both the time and performance are much higher than n-best 
correction heuristic. 

4.3 Trained Probability Model Heuristic 
Although n-best is faster than XTAG heuristic, but the 
performance of full-parsing is much lower. In the first 
method the candidate list for correcting the error nodes is 
so shorter than the later one, and thus it needs less time to 
search among the combinations. Here a method using a 
trained probability model is proposed. In fact, for any 
supertags si, sj, the probability of changing a faulty 
supertag sj to supertag si (i.e. P(si | sj)) which concludes a 
full-parse tree is calculated.  
These probabilities are estimated by using maximum 
likelihood estimation method with counting the number of 
successful changes of faulty supertag (sj) to correct 
supertag (si). By using from an annotated corpus of 40,000 
sentences and their syntactic parses, these changes are 
computed in an iterative fashion. At each iteration, the 
sentences are tagged by the supertagger and the correctness 
of LDA algorithms is checked by the previously mentioned 
error detection heuristics and the erroneous nodes are 
detected. The faulty nodes then substituted with other 
supertags proposed by a combination of XTAG-based and 
10-best heuristics. Each time an error supertag sj is 
replaced with supertag si, the resulting parse structure is 
evaluated by PARSEVAL metrics [3]. If the result is a 
satisfiable full deep structure, the frequency of successful 
changing si to sj increases one unit. The whole process of 
calculating the probability model P(si | sj) is shown in 
figure 1. 
The training algorithm is terminated when the changes of 
the probabilities after running the experiment on the whole 
40,000 sentences become ignorable. That is the total 
number of changes in whole probabilities becomes less that 
a predefined threshold. In our method, we set this threshold 
to be less than 0.05% of all entry values. At the end of 
process, all frequencies of changes in any faulty node 
should be normalized by using equation (1) in order to get 
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the probability P(sj | si). Having these probabilities, an 
ordered list of candidate nodes for any error supertag si is 
achieved, which can be used in the error correction 
method: 
 

P(si | sj ) = count(si, sj) / Σk count(sk, sj)  (1) 

 

 
Figure 1. The whole process of calculating the probability 

model P(si | sj)  

5. Evaluation 
In order to evaluate the proposed methods, 3000 sentences 
with their syntactic structure from Penn Treebank are 

selected as test corpus. These sentences are completely 
different from those that are used in the process of 
calculating the changing probabilities.  
We divided the test corpus into three different categories 
based on the sentence length: the sentences shorter than 16 
words, sentences with length between 16 and 25 words and 
sentences longer than 25 words1.  
The experiments include the evaluation of mentioned 
heuristics such as 1-best, 10-best, 25-best, XTAG based 
and trained probability model heuristics. In each 
experiment, the percentage of full-parsed sentences and 
parsing time are computed. Also, in order to evaluate the 
resulting full-parse quality, PARSEVAL metrics, 
introduced by [3], are calculated. We measure PARSEVAL 
metric only for those sentences which have been fully-
parsed successfully.  
Figure 2, 3 and 4 show the results of these experiments on 
each of the mentioned category. The evaluations show that 
considerable improvements both in time and percentage of 
full-parsed sentences are achieved by using the trained 
probability model heuristic. This method increases the full-
parse rate from the native supertagger (1-best heuristic) by 
a factor of 3 in the first category, by a factor of 11 in the 
second category and by the factor of 21 in the third 
category. That is, the effects of the trained probability 
model in long sentences are more than short sentences.  
Comparing the mentioned figures, shows that by increasing 
the sentence length, the percentage of full-parsing rate and 
parsing speed decreases dramatically. Also, in the trained 
probability model heuristic, the parsing speed increases 
about twice than XTAG-based heuristic, while the full-
parsing rate also increases about 20%.  
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Figure 2: Experimental results on sentences shorter than 16 

words 

                                                                 
1 Maximum length of selected sentences is bounded on 45 words.  
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Figure 3: Experimental results on sentences between 16 and 

25 words  
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Figure 4: Experimental results on sentences longer than 25 

words 

6. Conclusion  
Parsing is the one of the most important phases in many 
natural language applications, like information retrieval 
and rule-based machine translation systems, where it needs 
full-syntactic analysis for the input sentence. Although 
using more enriched grammar model, like TAG, is 
preferred because of its power in the descriptive model, but 
this kind of formalism lacks both in parsing speed and 
accuracy. 
To overcome these problems, we've taken the benefits of 
speed and accuracy of a shallow parsing algorithm named 
supertagger. We introduced several heuristics which get the 
partial parses as the input and generate the full-parse 
structure of the sentence.  
Several experiments on different data set selected from 
Penn Treebank show that by using error detection 
heuristics with a trained probability model to propose 
correcting candidates, the full-parsing rate as well as 
parsing speed have been improved significantly. 
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