Hypothesis Selection and Resolution
in the Mercury Flight Reservation System

Stephanie Seneff and Joseph Polifroni
Spoken Language Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

{seneff,joe}@sls.lcs.mit.edu) *

ABSTRACT

In a spoken dialogue system, the degree to which the dia-
logue manager informs and controls the behavior of other
human language technology components is an important re-
search topic. Although each separate server can be devel-
oped and trained on its own, it must function as part of
an entire system, and do so in the context of a complex
dialogue with a human user. The dialogue manager is the
one component that has not only local information from
each server, but also global knowledge about the task and
specific knowledge about a particular user’s constraints. In
this paper, we describe various algorithms we have devel-
oped for exploiting the knowledge of the dialogue manager
in the selection of recognition hypotheses in the context of
human-machine interactions. We describe enhancements we
have made to other human language technology servers for
the purpose of providing useful information to the dialogue
manager, as well as new capabilities in the dialogue manager
itself aimed at detecting and repairing problematic spots in
the dialogue. We conclude by describing some evaluation
metrics and tools we have developed for monitoring system
performance.

1. INTRODUCTION

In a spoken dialogue system, one of the most difficult as-
pects is assuring that the system understood correctly each
user query, or, if not, that the system is able to recover
gracefully and efficiently from the errors. A tedious though
effective strategy is to prompt the user at each turn, solic-
iting only one piece of information, subsequently verifying
through a confirmation subdialogue that it has been cor-
rectly understood. A more natural interface would allow
the user much greater freedom, but at the price of signifi-

*This research was supported by DARPA under contract
N66001-99-8904 monitored through Naval, Command, Con-
trol and Ocean Surveillance Center.

cantly higher perplexity. In such a mixed-initiative system,
it becomes important to draw on as many constraints as
possible to aid in the hypothesis selection task. Explicit
confirmation can yield greater confidence in the validity of
hypothesized utterances, but, again, at the risk of increased
tediousness.

This paper discusses how the MIT MERCURY flight reser-
vation system [8] deals with the issues of hypothesis selec-
tion and verification. It utilizes a mixed-initiative dialogue
strategy supported by confirmation subdialogues that are
invoked only when the system actively suspects miscommu-
nication. The system is implemented within the Galaxy
Communicator architecture [7], where a central hub me-
diates interactions among a distributed set of specialized
servers. For hypothesis selection, relevant information is re-
tained from prior turns, stored by the hub and distributed
to the appropriate servers as requested, mediated via the
hub program. The recognizer and the parser, as well as the
discourse, dialogue, and generation components, all play a
role in the selection process.

The MERCURY system poses interesting and challenging
problems for dialogue systems in that the interaction is com-
plex and involves multiple variables. Once these variables
are specified, users can become quite confused and the dia-
logue can be derailed if a serious misrecognition occurs.

In the remainder of this paper, we will first give a brief
overview of the entire MERCURY system, and describe both
the hypothesis selection process and the method that is used
to control dialogue management. Next we describe the con-
firmation algorithm, which as a policy only confirms when
it detects an unexpected response from the user. Follow-
ing this is a section on our various knowledge sources and
their representations. After giving a few example dialogues,
we present some evaluation results, including a discussion of
how we evaluate the system. We conclude with a summary
and a look to the future.

2. OVERALL SYSTEM DESCRIPTION

MERCURY is a spoken dialogue system that allows users
to plan air travel between over 500 cities worldwide. The
system currently gets all of its flight and fare information
from the Travelocity Web site (www.travelocity.com). Fol-
lowing log-on, the user interacts with the system to select the
flights of their itinerary. When the flight plan is completed,
the system takes the initiative in offering to price and email
the itinerary. Finally, the system optionally asks the user a

H% WebGALAXY - Netscape =1k

Fle Edit View Go Commuricator Help

——— a=E |

| waart light fram Boston to Den

I have flights on American, Delta, Frontier, TWA, 7
and United. the earliest nonstop United flight
leaves at 6:00 a.m. and arrives at 8:34 a.m.

¥ Airline Flight # | From To Depart Arrive Stops
1_ | [® UNITED AIRLINES 461 |Logan |Denver 600 am 834 am | (nonstop)

@7 UNITED AIRLINES] 1763 |Logan |Denver 799 an 1030 am | (nonstep)

Frontier 807 Logan Denver | 840 am |1120 am | {nonstop)

223 |Logan Denver | 915 an | 227 pa | (1 stop) —
[@xiTED ARLINES] 1289 | Logan Denver 1100 an | 134 pa | (nomstop)
639 Logan Denver | 105 pa | 511 pa | (1 stop)
1969 Logan Denver 124 pa | 635 pm | (1 stop)

4 7 7 o

MIT Spoken Language Systems Group

RS

&

3

=

il fiavascriptiselect (4

Figure 1: An illustration of the graphical interface to MERCURY. Airline names and source and destination
are linked to Web pages for the corresponding airlines and airports. Th user has clicked on the fourth flight,
and is asking to add it to the itinerary.

S: | Welcome to the MIT air travel planning system. . . . For enrolled users, please say your first and last name.
Otherwise, say, new user.

U: | john doe

S: | Please speak the month and day you registered as your password, as in, 'May first’.

U: | october nineteenth

S: | Welcome John. How may I help you?

U: | ineed to fly to salt lake city on may eighth in the afternoon

S: | Okay, flights from Boston to Salt Lake City departing between noon and 6:00 p.m. on Tuesday May eighth.
One moment please . . .
I have a nonstop Delta flight leaving at 5:55 p.m. and arriving at 9:19 p.m.? Would that work?

U: | is there an earlier flight

S: | Okay, flights from Boston to Salt Lake City departing before 5:55 p.m. on Tuesday May eighth. One moment please . . .
What about a Delta flight connecting in New York’s Kennedy leaving at 3:25 p.m.? Would that work?
I also have a United flight connecting in Chicago O’Hare leaving at 3:30 p.m.

U: | i would like a nonstop flight leaving anytime during the day

S: | Okay, nonstop flights from Boston to Salt Lake City departing between 5:00 am and 8:00 p.m. on Tuesday May eighth.
One moment please . . . I have 3 nonstop Delta flights: a flight leaving at 7:00 a.m., a flight leaving at 10:25 a.m.,
and a flight leaving at 5:55 p.m. Please select one of these flights or change any constraint you have already specified.
i will take the ten twenty [five] flight please
Delta flight 1035 has been added to your itinerary. you depart Boston at 10:25 am and arrive in Salt Lake City at 1:45 p.m.
What date will you be returning on?

U: | i would like to return on friday

S: | Okay, Delta flights from Salt Lake City to Boston on Friday May eleventh. One moment please . . .
I have 3 nonstop flights: a flight leaving at 9:55 a.m., a flight leaving at 2:35 p.m., and a flight leaving at 5:00 p.m.
Please select one.

U: | what time does the two thirty five flight arrive in boston

S: | Delta flight 1473 arrives at 9:05 p.m. in Boston. Shall I add this flight to your itinerary?

U: | what time is [does] that flight leave

S: | I have a nonstop Delta flight leaving at 2:35 p.m. and arriving at 9:05 p.m.? Would that work?

U: | yes please

S: | Delta flight 1473 has been added to your itinerary. you depart Salt Lake City at 2:35 p.m. and arrive in Boston at 9:05 p.m.
Would you like me to find out how much your trip will cost?

U: | yes please

S: | Pricing your itinerary will take a while. In the meantime I'll summarize your itinerary for you.On Tuesday May eighth
on Delta flight 1035, you depart from Boston at 10:25 a.m. and arrive in Salt Lake City at 1:45 p.m.,
on Friday May eleventh on Delta flight 1473, you depart from Salt Lake City at 2:35 p.m. and arrive in Boston at 9:05 p.m.
The cheapest price for your trip is $455.00. Shall I email your itinerary to you?

U: | yes please

S: | Your itinerary has been emailed to you. Can I help you with anything else?

Figure 2: Example dialogue between a user and the system involving a real trip. “U” denotes a user utterance,
and “S” a system utterance. The name has been changed for reasons of anonymity. Words in brackets under
the user’s turn represent what was actually said rather than what was recognized.

:Week | :Day | :RelDate — ResolveRelativeDate
:ReturnDate : :Date — CheckInvalidDate

:HypList & :ImplausibleReturnDate | :RejectedDate — SelectAlternateDate
:RequestDateConfirmation — PromptDateConfirm
:ConfirmDate deny — RequestKeypadDate

Figure 3: Selected entries from MERCURY’s dialogue control table concerning dates.

few questions to help determine user satisfaction. MERCURY
is intended to be up at all times, and can be reached via a
toll-free telephone number (877-628-8255). It is also acces-
sible in displayful mode from a Web page, in which case the
spoken interaction is augmented with a graphical display of
the set of retrieved flights. A multimodal interface supports
clicking on a displayed flight and referring to it verbally:
“Book this one,” as illustrated in Figure 1.

A telephone dialogue between a naive user and MERCURY
is shown in Figure 2. It should be clear from the dialogue
that the system offers specific suggestions when appropri-
ate: “Shall I add this flight to your itinerary?” “Can you
provide a departure or arrival time?” However, the user is
free to say anything at any time; i.e., the full recognition
vocabulary is always present. We have always been inter-
ested in building dialogue systems that were flexible in this
regard, but we are fully aware that a consequence is that
recognition errors, which are inevitable, may lead to inco-
herent dialogues, unless a great deal of attention is devoted
to error recovery.

We have thus far collected over 2000 dialogues with users,
mostly over the course of the last year. These dialogues were
all recorded in detail in log files, and the user queries were
also digitally recorded to be used later for training both the
recognizer and the natural language component. Perusal
of the log files has led to the design of several interrelated
strategies for hypothesis resolution, where we make use of
diverse sources of information to infer the most plausible
solution, including, at times, an explicit request for confir-
mation of a suspicious hypothesis.

2.1 SystemArchitecture

MERCURY makes use of the GALAXY architecture [6, 7],
consisting of a number of specialized servers that commu-
nicate with one another via a central programmable hub.
An audio server captures the user’s speech via a Dialogic
board, and transmits the waveform to the speech recognizer
[2]. The language understanding component [9] parses a
word graph produced by the recognizer and delivers a se-
mantic frame, encoding the meaning of the utterance, to the
discourse component. The output of the discourse compo-
nent [5] is the frame-in-context, which is transformed into a
flattened E-form (electronic form) by the generation server.
This E-form is delivered to the dialogue manager, and pro-
vides the initial settings of the dialogue state.

The dialogue manager consults a dialogue control table to
decide which operations to perform, and typically engages in
a module-to-module subdialogue to retrieve tables from the
database. It prepares a response frame, which may or may
not include tabular entries. The response frame is sent to
the generation component [1] which transforms it in parallel
into both a text string and an annotated string that specifies
the input controls for the speech synthesizer. Finally, the
speech synthesizer [10] transmits a waveform to the audio

server which then relays the spoken response to the user over
the telephone. The entire dialogue is recorded in detail in a
log file for later examination.

2.2 HypothesisSelectionProcess

Hypothesis selection is a complex process in MERCURY
that involves several steps, including interactions among
multiple servers. This process is represented schematically
in Figure 4. The recognizer provides a word graph represent-
ing multiple sentence hypotheses, with associated confidence
scores for each word in the graph. The NL component parses
the graph, producing an N-best list of semantic frames, cap-
turing alternative candidates for the meaning of the utter-
ance. A selection process singles out the most promising of
these frames, taking into account possible discourse context,
and presents this candidate to the dialogue manager. The
dialogue manager then decides whether this request is con-
sistent with the prior dialogue. If some part of the query is
problematic, it may do one of several things:

1. Ask the user for explicit confirmation,

2. Seek an alternative hypothesis from the N-best list, that
may be more appropriate pragmatically,

3. Reject (delete) certain attributes that are both pragmat-
ically inappropriate and poorly scoring,

4. Initiate a subdialogue asking for confirmation,

5. Ask the user to keypad in the information, as a redun-
dant, but less errorful, source.

The recognizer processes the recorded user waveform and
produces a word graph with associated confidence scores for
each word in the graph [4]. The confidence scores are based
mainly on the log likelihood probabilities of the words, ob-
tained from the acoustic models for their component phones.
The confidence scores are obtained from a set of ten features
that are combined into a single score using linear discrim-
inant techniques. In addition to the mean and minimum
log likelhood score of the word in all of its possible local
alignments, the combined score takes into account also the
difference between the word’s score and the best score ob-
tainable over the same acoustic space, and also against the
score of a “catch-all” model. The number of competitors for
the acoustic region is also taken into account.

The first step in hypothesis selection is to parse the recog-
nizer’s word graph into a set of candidate semantic frames.
This is done with our TINA natural language system [9],
which parses from a context free grammar augmented with
feature unification and a trace mechanism for movement. A
stochastic grammar, trained on a large corpus of within-
domain sentences, guides the Viterbi search through the
word graph. Acoustic and linguistic scores are combined
to give an overall sentence score. In addition to the total
combined score for each hypothesis, critical content words
(e.g., cities and dates) retain their confidence score associ-

Word
Graph
Word Confidence Collect N -best | Parse
Scores Candidate Frames Probabilities
v
Dialogue Context ,| SelectPreferred | «——Parse Status
Filter Hypothesis
Choose
N Alternate
o
Explicit ~ (Maybe | piausible Query?
Confirmation
Implicit
Confirmation

Figure 4: A block diagram of the process of hypoth-
esis selection and verification.

ated with the corresponding element in the semantic frame,
for possible later consideration by the dialogue manager.

Each candidate semantic frame is also labelled according
to its parse status, with one of four possible categories: “full
parse,” “robust parse,” “phrase spot,” and “no parse.” “Full
parse” means that a single coherent parse tree accounted
for every word in the hypothesis. “Robust parse” means
that every word was accounted for, but the parse structure
consists of a sequence of parsed fragments with possibly in-
terspersed licensed “skip words.” “Phrase spot” means that
large parts of the hypothesis may have been totally ignored,
but certain critical, high scoring, content words were singled
out for parsing. Even with all of these back-off mechanism,
it is still the case that some user utterances are unparseable.
The dialogue manager is responsible for providing a context-
dependent response for this “no parse” category (see below).

The next step is to use a simple heuristic to select the
most promising candidate from the set of parsed frames. In
the absence of any directives from the dialogue component,
the system simply chooses the highest scoring full-parse the-
ory, backing off to robust-parse, and finally phrase-spotting.
However, it is often the case that the dialogue component
has set up context conditions that will preferentially favor
an otherwise sub-optimal theory. This can include a list of
one or more semantic categories that are in focus, and/or,
in some cases, individual words that are highlighted, or in-
dividual words that are to be selected against. For example,
if the system has just asked the user for a return date, then
all dates are given preferential treatment. Similarly, if it has
just listed the cities it knows in Kentucky, those cities will
be highlighted.

Once the most promising hypothesis has been singled out,
it is processed through context resolution and delivered to
the dialogue manager for consideration. If all goes well, the
new information is interpreted and a response is prepared
that moves the dialogue plan closer to a conclusion. The
alternative hypotheses are retained, but utilized only when
there is reason to believe the selected hypothesis is erro-
neous, as discussed in the following section.

2.3 Dialogue Control Mechanism

The dialogue manager is tasked with the difficult respon-
sibility of determining how best to answer each user’s query.
With each turn, it processes the user’s query, represented as
a semantic frame, and prepares its meaning response, also

represented as a semantic frame. The generation component
converts the reply frame into a well formed reply string, to
be spoken back to the user.

As mentioned earlier, dialogue control is managed in MER-
CURY through the use of a dialogue control table. This table
is a simple device for managing complexity — it enforces a
linear organization of the complex planning tasks of dialogue
management, and provides a high-level representation of di-
alogue activities in an outline form. The table takes the form
of a set of rules, specifying functions to be called when spec-
ified conditions are met. The conditions are tests (boolean,
arithmetic, string match, etc.) on variables maintained in
a dynamic dialogue state frame. The variables are initial-
ized from the user’s query (in context), and are augmented
in the course of a dialogue turn by the various functions
that are executed. Each function, which has access to the
entire knowledge base (see Section 4), is allowed to return
one of three possible “move” states: continue, restart, and
stop, with the obvious meanings. Restart is typically used to
reevaluate a query after dropping a constraint, given that no
flights match against the original set of constraints. A final
“exit function” is executed at the conclusion of each turn,
which updates the dialogue history and finalizes the various
parameters that are to be returned to the hub program.

It is up to the system developer to partition the dialogue
tasks into a set of specific functions, and to choreograph
the order in which, and conditions under which each func-
tion should be called. Ideally, each function has a very spe-
cific role, some having to do with verifying that the query
is fully specified, others involved with retrieving the infor-
mation from the database, and still others involved with
preparing the reply frame. MERCURY’s dialogue control ta-
ble currently contains over 350 rules. Typically, up to twenty
or more rules may fire in a single turn.

A selected subset of the rules concerned with managing
dates is shown in Figure 3. The first rule is concerned with
resolving references such as “the following Friday” or “three
days later.” The second rule tests whether the understood
date is within the time window of MERCURY’s knowledge
base (ten months into the future), and whether the dates of
the itinerary are causal and plausible. It sets up keys that
are used by the third rule to search for a more plausible date
hypothesis from the N-best list. The fourth rule sets up a
prompt to confirm with the user whether the understood
date is indeed what they said. The final rule initiates a
request for a keypad entry of the date, after the user has
rejected a confirmation.

3. CONFIRMATION

By default, the system confirms implicitly what the user
said, as illustrated in figure 2, by repeating the understood
constraints in the reply. The user then has the opportu-
nity to override any incorrectly understood constraints in a
follow-up utterance. However, a number of different con-
ditions can trigger an explicit confirmation subdialogue, in
which the system delays action pending further input from
the user. The general strategy is as follows: if the system de-
tects an unanticipated request from the user, it asks for con-
firmation. In some cases, it also requests redundant entry
via the telephone keypad. The critical pieces of information
that may invoke a confirmation subdialogue include signing
on, source and destination, travel date, and signing off. The
system also considers “no parse” to be a problematic condi-

tion, and a context-dependent response to this situation has
been implemented.

Signing On The user signs on by providing orally their
name and a password encoded as a date. If an incompati-
bility is detected, the system then invites the user to enter
the password using the telephone keypad. At this point, if
the password still appears to be incorrect, the system reex-
amines alternative hypotheses for the user name, applying
a strict filter on the subset that are supported by the pass-
word. If this last step fails, the system defaults to a guest-
user status.

Source and Destination A number of difficult situations
can arise regarding cities, each of which is given special treat-
ment. For example, whenever the user appears to change the
source or destination at a point in the dialogue where this is
unexpected, the system asks for confirmation. If confirma-
tion fails, it then offers help by informing the user that they
can ask what cities it knows in a particular state or coun-
try. It is essentially hypothesizing that the user may want
to travel to a city that is outside of its known vocabulary.

An interesting case is when the user appears to have iden-
tified both a city and a state/country, but they are pragmat-
ically incompatible, e.g., “to Dallas New Jersey.” In such
cases, it compares the confidence scores to decide which one
is most likely to be trustworthy. If it is the state, it lists
the cities it knows for that state. Otherwise it accepts the
hypothesized city and discards the state.

Under special circumstances, when the system determines
that a hypothesized source or destination is likely to be in-
correct, it invites the user to enter the city using the tele-
phone keypad. We have determined that, although MER-
CURY knows over 500 cities, they are uniquely represented
by the letter mappings corresponding to the keypad, despite
the 3-to-1 ambiguity in spelling words using the keypad.
Cities are highly ambiguous if only the first three characters
are entered. Thus, the system is licensed to accept a par-
tially spelled city only if it matches a prior hypothesis avail-
able from the dialogue history. The algorithm that triggers
keypadding of the city is conservative, as this is a rather te-
dious process and should be avoided unless repeated spoken
attempts are failing.

Dates The first time the user provides a date for the next
leg of a trip, the system assumes it was correctly recognized,
unless it violates pragmatic constraints. However, if the user
appears to change a prespecified date, the system prompts
for confirmation prior to accepting the changed date. If con-
firmation fails, the user is invited to key in the date using
the telephone keypad. If the user appears to be repeating
the same date in isolation, the system suspects a miscommu-
nication. It then browses through any alternative candidate
frames, seeking one that provides a novel date. Regardless
of whether it succeeds, it prompts the user for confirmation
of the selected date candidate, again invoking the telephone
keypad upon failure.

We make use of a “date history” (see below) as a way of
determining whether a given recognized date conforms with
what we know about the dialogue so far, or if the user should
be prompted for confirmation. The heuristics around this
date history are an ongoing research issue, but this detailed
record has proven to be a valuable source of knowledge about

{c city_history
:source "BOS" :source_status "inherited"
:dest "GSO0" :dest_status "changed"
thistory {c city_history
:source "B0S" :source_status "inherited"
:dest "GSP" :dest_status "repeated"
thistory {c city_history
:source "B0S"
:source_status "first"
:dest "GSP"
:dest_status "first" } } }

Figure 5: Example city history frame represent-
ing the activities in the last three utterances con-
cerning source and destination. This record shows
that the source was inherited in the last two utter-
ances, whereas the destination was apparently first
repeated and then changed, a likely condition for
recognition error. Note: GSO = Greensboro, GSP
= Greenville, and BOS = Boston.

the dialogue.

Signing Off A surprisingly difficult aspect of mixed-initiative
dialogue is deciding when the user is saying “good bye.” The
problem is that a false recognition is catastrophic here, be-
cause the effect is to terminate the conversation. When the
user is apparently terminating, the system uses pragmatics
to determine whether this is a point at which reasonable
closure has been reached. If not, it asks for confirmation.

No Parse Whenever the system fails to understand the
user’s query, there is the potential that the user’s plan and
the system’s plan may be in conflict. It could be that the
user is trying to go to a city that is not supported, or that the
system is making a false presupposition about the itinerary.
Thus, for example, a “no parse” will trigger a request for
keypadding the source or destination, if there is any evidence
of confusion with regard to this attribute at that time.

The system asks, “where would you like to go next?” af-
ter each flight is selected for the itinerary, and if the user
intends a one-way trip, they may phrase that information
in a way that is not covered by the grammar. Therefore,
in this context, the system always responds to a “no parse”
with the reply, “Is this a one-way trip?”

A single “no parse” without any clear evidence for a dia-
logue disconnect yields a simple apology: “I’m sorry, I’'m not
sure what you said.” A subsequent “no parse” is treated as
a request for “help,” and invokes a sophisticated dialogue-
context dependent help mechanism, to try to dislodge the
user from an ineffective communication strategy.

4. KNOWLEDGE SOURCES

In order to inform hypothesis selection at any point in the
dialogue, we make use of several knowledge sources that are
maintained and updated continually throughout the user’s
conversation with the system. The dialogue state is, of
course, one of the most useful of these knowledge sources.
The dialogue state encodes parts of both sides of the con-
versation, in that it identifies any preceding system-initiated
query as well as all user-specified constraints. The dialogue
state also contains information on how far the user has come
in the overall travel plan, which is helpful in determining if

Welcome . .
Jane Doe

. For enrolled users, please say your first and last name. Otherwise, say 'new user.’

September six [misrecognized]

Please speak the month and day you registered as your password, as in "May first.’

waowan

[successful enrollment]

Sorry. I didn’t catch that. Please enter your four digit date password using the telephone keypad.

Figure 6: A dialogue with a user involving logging on, where the keypad entry of the date was successful.

The name has been altered for privacy reasons.

May third [misrecognized)

S: | Continental flight 1662 has been added to your itinerary. You depart San Francisco at 6:30 a.m. and arrive in
Houston at 12:20 p.m. What date will you be returning on?

wca

Nope March third

Okay. Continental flights from Houston to San Francisco on Thursday May third. One moment please . . .
Can you provide a departure or arrival time? The earliest nonstop flight leaves at 7:40 a.m. and arrives at 9:59 a.m.

0303 [keypad]

Please enter the four digit month and day using the telephone keypad.

nawa

Okay. Continental flights from Houston to San Francisco on Saturday, March third. One moment please . . .

Figure 7: A dialogue with a user where the system prompted for a keypad entry of the date, with subsequent

success.

When is the next flight from Anchorage to Seattle?

Delta

Flights from Anchorage to Seattle. What airline are you interested in?

ncawdg

Yes, connecting to San Diego

Okay. Delta flights from Anchorage to Seattle on Thursday February 22. One moment please . . .
I couldn’t find any flights on Delta. I have a nonstop Alaska Airlines flight leaving at 8:59 p.m.
and arriving at 1:14 a.m. You arrive the following day. Would that work?

I heard you say you want to arrive in San Diego. Is that correct? If you need help, you can say,
for example, "What cities do you know in Oregon.’

U: | [I] know Portland.
S.

Please enter the full name of the destination city using the telephone keypad.

Figure 8: A dialogue in which the system was provoked to request a keypad input on the destination city.

This request was unsuccessful (the user hung up).

a particular dialogue move is likely.

The system also retains in history a user model which is
continually augmented as the dialogue progresses through
the itinerary plan. It includes any as yet unverified con-
straints that have been specified but are not yet enforce-
able, such as an early specification of the return date or
the mention of a desired fare class before the itinerary is
completed. It also includes the particular details of the se-
lected partial itinerary, which are useful for applying date
and source constraints to later legs. In addition, a set of
frames is maintained for alternative recognizer hypotheses
of dates, for possible later reselection. If the original date
is pragmatically implausible, alternative dates are selected
from this set. The alternates are flushed each time a new
leg is selected.

We have instrumented a detailed record-keeping mecha-
nism for tracking source and destination throughout a di-
alogue. We have found these two keys to be especially
problematic, particularly in cases where the user may be
attempting to travel to or from a city that is not in the
recognizer’s vocabulary. In these cases, the same misrecog-
nition tends to occur repeatedly, as the recognizer contin-
ues to substitute the same incorrect hypothesis for the in-
tended city, or the source/destination in question varies from
query to query, as the recognizer hypothesizes different cities
within its known vocabulary. By monitoring the patterns of
source/destination keys from query to query, we hope to be

able to decide when to prompt for verification or to solicit
keypad input.

Each source and destination city is entered into this his-
tory throughout the course of a single dialogue. This history
is updated for each turn in which these values are present,
either from the user utterance or from inheritance. A status
is stored along with the city, indicating whether the city was
newly introduced in that turn, changed, repeated, or inher-
ited from a previous turn. The record is stored in a nested
frame structure, as illustrated in Figure 5. For each query
containing source or destination keys, this record is con-
sulted to determine if the values are consistent with what has
appeared before in the dialogue. The city history is flushed
whenever a flight is selected for the itinerary. We are cur-
rently developing heuristics for determining how to proceed
when specific patterns of activity are showing up. Options,
as discussed above, are to enter a subdialogue to confirm a
newly introduced destination, or to seek a redundant (but in
some cases more reliable) entry using the telephone keypad.

5. EXAMPLE DIALOGUES

In this section, we present a number of real dialogues,
to illustrate various situations where keypad entry was re-
quested. Figure 6 shows a segment of a dialogue where key-
pad entry was successful for enrolling the password during
the logging on stage. Figure 7 provides an example dialogue
where successful keypad entry of a date was triggered. Fig-

To: sls-developers@sls.lcs.mit.edu
From: mercury
Subject: successful dialogue with mercury

The fourth successful dialogue with john doe has just fin-
ished. The itinerary was priced at 567.25. The following
itinerary was reserved. on Wednesday April 18 on American
flight 277, you depart from Boston at 9:30 am and arrive in San
Diego at 12:49 pm., on Friday April 20 on American flight 2790,
you depart from San Diego at 6:04 pm and arrive in San Jose
California at 7:26 pm., on Monday April 23 on American flight
108, you depart from San Jose California at 8:00 am and arrive
in Boston at 4:45 pm.

Figure 9: Example of the email message that is sent
to system developers when a MERCURY dialogue is
completed.

ure 8 shows a rather confusing dialogue in which the system
was provoked to request a keypad entry of the departure city.
The system did not understand how to interpret the user’s
rather cryptic utterance, “Yes, connecting to San Diego.”
One might surmise that the user was not attentive to the
system’s response during the third turn, and therefore an-
swered the question, “What cities do you know in Oregon,”
rather than asking it. The user hung up at this point, so
the keypad request was not successful.

We have seen several cases where keypadding was effective
for both passwords and dates. Since we have only recently
introduced the option to keypad cities into the live system,
we are not yet able to say whether this is a productive strat-
egy. At issue is whether the user can keypad an entire city
name without errors. We will also probably need to refine
the algorithm based on the outcomes of continued dialogue
collections.

6. EVALUATION

Dialogue is a notoriously difficult aspect of human lan-
guage technology to evaluate. The dialogue manager in-
forms and affects the performance of many other parts of
the system. The intelligence built into the dialogue man-
ager, exemplified above, is essential for the correct selection
and interpretation of utterances in the context of a dialogue.
Word, sentence, and concept error rate, all applied on a per-
utterance basis, are not sufficient by themselves to indicate
that a particular dialogue strategy is more effective for a
particular task.

It is not possible to compare two dialogue strategies on the
same data. Furthermore, it is difficult both to implement
and to interpret a re-evaluation of an enhanced version of
the system, because of problems related to both dialogue
incoherence and dynamic knowledge sources. We have had
some success in reprocessing log files, although the results
must be interpreted with care. Furthermore, it is essential
to maintain detailed log files that contain representations of
all knowledge sources, in order to be able to use them for
reprocessing.

6.1 DialogueEvaluation Metrics

We have recently developed two new metrics, Query Den-
sity and Concept Efficiency to attempt to measure system
performance at the dialogue level [3]. These metrics are

meant to quantify how effectively a user can convey new
information to a system (the “query density”), and how
efficiently the system can absorb information from a user
(“concept efficiency”).

Computing the QD and CE metrics requires reprocess-
ing of dialogue data, after an orthographic transcription has
been supplied by hand. Two parallel paths through the en-
tire system are mediated by hub scripts. In the first, the
recognizer hypothesis from the time the data were collected
is processed; in the second, the orthography of what the
user actually said is similarly processed. For each of these
paths, a separate key-value representation is obtained and
sent to the evaluation server for processing. However, the
discourse and dialogue content is maintained exclusively by
the branch dealing with the recognizer hypothesis. In this
way, the dialogue proceeds as it did at the time of data col-
lection, modulo changes to the data sources and the dialogue
manager. Because all of our systems make use of continually
updated, dynamic data sources, it is virtually impossible to
guarantee that the dialogue interactions which occur during
a subsequent evaluation will be coherent.

In typical evaluations on these measures, the system ob-
tains around 1.5 for QD, i.e., on average, one and a half
successfully communicated attributes per query, and .92 on
CE, i.e., 8% of the attributes had to be repeated.

6.2 “Living” Evaluation

We have found that one of the most important assessment
procedures is to manually examine log files of interactions
with users, and to guide system development based on inter-
actions where it is clear that alternative approaches would
have benefited. This is an iterative procedure tightly cou-
pling data collection efforts with system development. To
expedite this process, we have developed mechanisms for
monitoring MERCURY’s performance on a daily basis, which
have been instrumented both in hub programs and by auto-
matic post-processing of session log files.

When a dialogue is completed with the MERCURY system,
mail is immediately sent to system developers. This mail
is triggered by a rule in a hub program, and provides a
summary in English (generated by the system’s generation
component) of the itinerary obtained, as illustrated in Fig-
ure 9. In addition, the mail specifies who the user was and
how much experience the user has had in using the MERCURY
system (i.e., how many previous calls have been logged to
that user). The system also sends a daily email to system
developers, summarizing MERCURY’s activity on that day.
It includes statistics on itineraries obtained and utterances
parsed per dialogue, as well as providing a to-date summary
of total data collected for the MERCURY system.

Each call to the MERCURY system produces a detailed log
file of the interaction, as well as digitized waveform files
for each utterance spoken. We have set up a web-based
interface to these data, summarizing the interactions for any
given day on one page and providing links to separate web
pages for each dialogue. By going to a particular dialogue
page, a developer can see at a glance the entire interaction,
listen to what was spoken, and examine the frames that were
used by the MERCURY system in answering each query. In
addition, the developer can transcribe or edit a transcript of
the speech. Figure 10 shows an example of such a webpage
for a recent MERCURY dialogue.

Finally, we ask the users themselves to rate the system

Fls Edi Visw Go Communicstor Help

¢ @ @ e B oS & G
Back Fousid Reload Home Semch Nelscape Pini Secuiy Shop Giop
Z " Bookmarks J Lonation | 20010321 /002/E rrolk- 20010321002 hublog et v| @517 What's Relaled
7 AlnstarntMessage (5] WebMail [Caendar Radio [B People B Yellow Pages Download (- Channels
- |
NN sl galaszyMler curyr C ommunicatorEnr o200 032 17002/ Enroll- 200 10321-002-002 510
SPOKEN. [+ woula like to go from pitteburgh to la guardia on warch thirtieth
RECOGNIZED: i wold like to g from pittsbureh to 14 puardia on march thi J
REPLY. oleay, from Piitsbu to Blew York's La Guardia on Friday March 30, Can you prowvide the approximate
departure time or aitline?
RequestFrame | ReplyFrame Dialogue State Filter List Key Value Sys Dnitiative
ks
UL V's! galazyMercury/C ommunicator/Enrollf20010321/002/Enroll-20010321-002-003 510
SPOKEN, [in the morning
BECOGNIZED: jin the motning
v, Pittshurgh to New Tork's T st ng between 300 am and neon on Friday March
VT REPLY ?{ca;, o Pittsburgh te New Tork's La Guardia departing between 5:00 am and noon on Friday Marc]
30, One moment please,
[hiave flights on Airtran Airways, and 1 § Airways. the eariestnenstop U 8 Adrways fight leaves at .00 am
REPLY: %
and arrives at 7:23 a.m
ReguestFrame ‘ ReplyFrame Int ReplyFrame Dialogue State Filter Tist | Key Value Sys Tnitiative
NN sl galaszyMer cury C ommunicatorEnr o'2001032 1/002/ Enr ¢l-20010321-002-004 sro
SPOKEN Jao vou have one arcund ten @ w
N s e y— =l
el Document: Done S s g @ 2|

Figure 10: A web page showing a dialogue with a Mercury user. Links point to multiple knowledge sources
derived from the log file, as well as enabling playing and transcribing user utterances.

at the end of every dialogue. When a user completes an enrollment of unknown words (e.g., new city or user name).
itinerary or otherwise ends a session, the system asks the
user to remain on the line to answer two Yes/No questions 8. REFERENCES

(“Was this a real trip you were planning?”, “Were you sat-

1] L. Baptist and S. Seneff, “Genesis-II: A Versatile Syste
isfied with the system?”) and one query to elicit any com- 1] pus on e e o SYSHE

for Language Generation in Conversational System

ments or suggestions the user has. By transcribing and pars- Applications,” Proc. ICSLP ’00, Beijing, China, Oct. 2000.
ing the responses to these queries, we can automatically cor- [2] J. Glass, J. Chang, and M. McCandless. “A Probabilistic
relate user satisfaction and system relevance to other more Framework for Feature-based Speech Recognition,” Proc.
easily quantified measures of system performance. ICSLP ’96, pp. 22772280, Philadelphia, PA, 1996.

[3] J. Glass, J. Polifroni, S. Seneff, and V. Zue, “Data
Collection and Performance Evaluation of Spoken Dialogue
7. SUMMARY Systems: The MIT Experience,” Proc. ICSLP ’00, Vol. 1V,
pp- 14, Beijing, China, 2000, Oct. 2000.

.T.his paper has focused on the’ process involved in detgr- [4] T. Hazen, T. Burianek, J. Polifroni, and S. Seneff,
mining what the user has plausibly intended at each dia- “Integrating Recognition and Confidence Scoring with
logue turn in a mixed-initiative dialogue, conditioned on Language Understanding and Dialogue Modelling,” Proc.
a recognizer word graph with associated word confidence ICSLP-2000, pp. 1042-1045, Beijing, China, Oct., 2000.
scores. The dialogue component directly influences the ini- [5] S. Seneff, D. Goddeau, C. Pao, and J. Polifroni,
tial selection process, at least whenever it has provided a “Multimodal Discourse Modelling in a Multi-user

Multi-domain Environment,” Proc. ICSLP-96, pp 192-195,
Oct., 1996.

[6] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V.
Zue, “Galaxy-II: A Reference Architecture for

specific context. While a set of N-best semantic frames is
produced, most of the attention is directed towards the pri-
mary selected candidate. After perusal, several problematic

situations trigger a response that involves confirmation re- Conversational System Development,” Proc. ICSLP ’98,
quests and/or help messages. Sometimes components of the pp- 931-934, Sydney, Australia, Dec., 1998.

frame are ignored, either because the system can find no ap- [7] S. Seneff, R. Lau, and J. Polifroni, “Organization,
propriate interpretation for them, they have low confidence Communication, and Control in the GALAXY-TI

scores, and/or they conflict with other information present Conversational System,” Proc. Eurospeech ’99, Budapest,

Hungary, pp. 1271-1274, Oct., 1999.
[8] S. Seneff and J. Polifroni, “Dialogue Management in the
MERCURY Flight Reservation System,” Proc.

in the same frame. The general strategy is to invoke con-
firmation subdialogues only when the user appears to make

a surprise move. Similarly, alternative hypotheses are only ANLP-NAACL 2000, Satellite Workshop, Seattle, WA,

considered when the top hypothesis leads to pragmatically May, 2000.

implausible outcomes. [9] S. Seneff, “TINA: A Natural Language System for Spoken
We have found the strategy of backing off to the telephone Language Applications,” Computational Linguistics, Vol.

keypad to be an effective way to ensure successful commu- 18, No. 1, pp. 61-86, 1992.

nication in the face of compromised recognition. We have (10] J. R. Yi, and Glass, J. R., 1998. Natural-sounding Speech

Synthesis using Variable-length Units. Proc. ICSLP 98,

had extensive experience with keypadding the login pass- Sydney, Australia, pp. 1167-1170, Nov., 1998.

word and the dates of the itinerary. Keypadding source and
destination city has only been introduced very recently, and
it is too early to tell if this method will be effective for cities.
Plans are underway to extend this capability to apply to the
enrollment of the user name, and ultimately, as an aid in the

