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Abstract

Event extraction from text is a complex task
that involves the identification of event trig-
gers and their supporting arguments. When
applied to speech, this task becomes even
more challenging due to the continuous na-
ture of audio signals and the need for robust
Automatic Speech Recognition (ASR). This
paper proposes an approach that integrates
ASR with event extraction by utilizing the
Whisper model for speech recognition and a
Text2Event2 Transformer for extracting events
from English audio samples. The Whisper
model is used to generate transcripts from au-
dio, which are then fed into the Text2Event2
Transformer to identify event triggers and their
arguments. This approach combines two dif-
ficult tasks into one, streamlining the process
of extracting structured event information di-
rectly from audio. Our approach leverages a
robust ASR system (Whisper) followed by a
parameter-efficient transformer (Text2Event2
fine-tuned via LoRA) to extract structured
events from raw speech. Unlike prior work
trained on gold textual input, our pipeline is
trained end-to-end on noisy ASR outputs. De-
spite significant resource constraints and data
noise, our system ranked first in the ACL 2025
XLLM Shared Task II.

1 Introduction

Event extraction from speech audio samples poses
a challenge as the shortcomings of ASR like noise,
substitution errors, hallucinations and other errors
get propagated to the event extraction transformer
leading to erroneous training dataset leading to
the transformer learning from an erroneous data.
Unlike previous work that utilizes clean, curated
textual data for event extraction, we address the
more realistic and challenging scenario of extract-
ing structured events directly from raw audio input
(Fei et al., 2024). This introduces transcription
noise, alignment challenges, and limited supervi-

sion, requiring novel techniques to ensure general-
izability and robustness.

We have streamlined the process of event
extraction from English audio samples with
WiSE (Whiper-to-Structured-Events) which uti-
lizes Whisper-medium1 developed by OpenAI2

and fine-tuned Text2Event2 transformer model as
in (Wang et al., 2024). The audio before passing
through the whisper-medium model and tokenizer
is processed to convert to a frequency of 16kHz
and monophonic channel audio samples. It is done
to bring the audio samples to the same reference
frame for better transcript generation which will
lead to better event extraction and can also use
multimodal LLMs like (Wu et al., 2024).

Loudness of the audio samples is also standard-
ized to bring them to the same reference frame.
Then the audio samples are passed through the
Whisper-medium model and transcripts are gen-
erated. This transcripts of train and develop-
ment dataset in combination with the labelled
events of the audio files was used to fine-tune the
Text2Event2 transformer model for better accus-
tomed with our scenario.

2 Dataset Description

Dataset was provided to us for a shared task organ-
ised by XLLM in collaboration with ACL in 2025.
This dataset is specifically from the shared task II:
Speech Event Extraction (SpeechEE). The dataset
contains 33 event types and 22 argument roles,
with 19217 training data, 901 validation data and
676 testing data. The data was given to us inform
of english audio samples. In addition to this, we
were also given a detailed event schema in the form
of json which included all the event types and the
argument types to support a particular event.

1https://huggingface.co/openai/whisper-medium
2https://openai.com/
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{
"Start-Org": ["Agent", "Org", "Place"],
"Marry": ["Person", "Place"],
"Start-Position": ["Person", "Entity", "Place"],
"Acquit": ["Adjudicator", "Defendant"],
"Meet": ["Entity", "Place"],
"Merge-Org": ["Org"],
}

Figure 1: Schema of an event

Although the data set contains over 20, 000 au-
dio samples, only 3, 669 samples had tagged events
and the corresponding arguments in the combined
training and development sets. This limited anno-
tated data presents a significant challenge in train-
ing robust models. To illustrate the structure of the
data, a sample transcript of “train-3.wav” is pro-
vided in “train.json” along with its tagged event.
This annotation includes detailed information on
the event triggers and their respective arguments,
which are crucial to fine-tuning the Text2Event2
Transformer model to accurately extract events
from the transcripts generated by the Whisper ASR
system. The scarcity of annotated data highlights
the need for efficient use of available resources
and innovative strategies to improve model perfor-
mance.

Transcript:
Even as the Secretary of Homeland Security
was putting his people on high alert last month,
a 30-foot Cuban patrol boat with four heavily
armed men landed on American shores. Un-
derly undetected by the Coast Guard Secretary
Ridge now leads.

{
"trigger": "landed", "type": "Transport",
"arguments": [

{"name": "boat", "role": "Vehicle"},
{"name": "men", "role": "Artifact"},

{"name": "shores", "role": "Destination"}
]

}

Figure 2: An example of events and their arguments

The training set and development set was com-
bined and created into one dataset since the labeled
dataset was so limited. A small set is kept aside
for testing. It is important to note that although
the dataset mirrors the ACE05EN schema, no gold
transcripts were provided. All training data was
supplied as raw English audio, requiring the con-
struction of training data via ASR-generated tran-
scripts. This modality shift introduces significant

transcription noise, necessitating event extraction
models that are robust to imperfect input.

3 Methodology

Automatic speech recognition also known as ASR
is used to convert human speech to readable text.
It has grown quite recently and is being used in
various fields where human speech need fast tran-
scriptions like live caption generation and live trans-
lation from one language to another language. This
all requires speech recognition and speech-to-text
conversion models. Whisper by OpenAI (Radford
et al., 2022) is a state-of-the-art ASR model trained
on 6, 80, 000 hours of multilingual and multitasked
supervised data. Training on this vast dataset has
made the model robust to background noise, ac-
cents, and various languages.

We have used the whisper-medium model to gen-
erate the transcripts of the training set and the de-
velopment set and created into a pandas data frame.

File Name Transcription
train-10589.wav Oh, uh-huh.
train-18281.wav And now just so...
train-6191.wav At the time...
train-140.wav And the Democrats...
train-12985.wav Tom Racings
train-11948.wav I don’t know.
train-2803.wav It would talk about tips....
train-463.wav I did not feel less than
train-2041.wav They got to understand.
train-2815.wav Famed World War II...

Table 1: Transcripts generated by whisper-medium
model

3.1 BERTag

Transcripts and their respective event triggers and
arguments are aligned and passed on to a BERT
model previously fine-tuned for named entity recog-
nition (NER). The BERT-base-NER3 model was
previously fine-tuned for BIO-tagged NERs. It has
been trained to recognize four types of entities: lo-
cation (LOC), organizations (ORG), person (PER)
and Miscellaneous (MISC). So to make it more
aligned with our event schema we used an external
label list for our event trigger and used label2id
and id2label functions to map the event to new
labels and vice versa. Then a tokenized data set
was created for each training and validation set.

3https://huggingface.co/dslim/bert-base-NER
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Figure 3: Performance of the model across epochs:
Training Loss, Validation Loss, and Accuracy

We fine-tune the BERT4 model using the Hug-
gingFace Trainer API. The model is trained for 3
epochs with a batch size of 8 in both the training
and evaluation datasets. We employ the epoch
strategy for both evaluation and checkpoint saving.
The best model is selected based on eval_loss,
using load_best_model_at_end=True and
greater_is_better=False. Logging is per-
formed in every 10 step, and a maximum of 2
checkpoints are retained to limit storage. The
DataCollatorForTokenClassification is used
with the BERT tokenizer to handle dynamic
padding. For evaluation, we report the accuracy at
the token level, excluding padding tokens (label
-100).

We use a simple token-level accuracy metric for
evaluation. Model predictions are first reduced us-
ing argmax over the class dimension. For fairness,
tokens labeled with -100 (used to mask padding or
special tokens) are excluded from both predictions
and ground-truth labels. Accuracy is computed as
the proportion of correctly predicted tokens over
all valid (non-masked) tokens.

3.2 T2E2
Text2Event an end-to-end sequence to structure
generation paradigm as proposed by (Lu et al.,
2021). This model uses google/t5-large5 model.
Currently, most of the NER tasks use the decompo-
sition method of diving the given sequence into
multiple subtasks and then correlating the trig-
gers with their specific arguments based on event
schema. Text2Event was trained on ACE05EN
dataset where the input is a linearized format for
the encoder to encode and a trie-based decoder so
that the outputs follow strictly the event schema.

We utilize the BurgerTruck/text2event2
checkpoint based on a pretrained Trans-
former model for sequence-to-sequence

4https://huggingface.co/google-bert/bert-base-uncased
5https://huggingface.co/google-t5/t5-large

learning. The tokenizer is initialized us-
ing AutoTokenizer, and the model is
loaded via AutoModelForSeq2SeqLM with
load_in_8bit=False and device_map="cpu"
for CPU-based execution. For GPU accel-
eration, the model can be deployed with
load_in_4bit=True and device_map="auto"
to enable QLoRA training on low-memory
GPUs. We employ the PEFT (Parameter-
Efficient Fine-Tuning) framework and apply
LoRA (Low-Rank Adaptation) (Hu et al.,
2022). The model is first prepared with
prepare_model_for_kbit_training, followed
by a LoraConfig with rank r=4, scaling factor
lora_alpha=16, dropout lora_dropout=0.1,
and targeting the “q” and “v” attention modules.
The final model is wrapped using get_peft_model
for fine-tuning under the “SEQ_2_SEQ_LM” task
type.

To accommodate the constraints of limited GPU
access, we adopted a parameter-efficient fine-
tuning (PEFT) approach using Low-Rank Adap-
tation (LoRA). This allowed us to fine-tune the
Text2Event2 model entirely on CPU while main-
taining performance. We applied LoRA to the at-
tention layers of a T5-based sequence-to-sequence
transformer, achieving competitive accuracy under
extreme resource limitations.

The dataset had only 3669 labelled event sam-
ples so we used the whole set for fine-tuning and
tested the model by generating outputs for the test
set and scored it on the evaluating platform. Even
though the dataset given to us closely resembled
ACE05EN and Text2Event was trained on it, fine-
tuning was necessary as the transcripts of ASR
by whisper might be able to generate ACE05EN
equivalent input sentences.

Figure 4: Training loss across different training steps.

4 Results and Discussion

To assess the effectiveness of event extraction mod-
els, organisers adopted a multi-task evaluation

285



framework comprising three subtasks. Each task
evaluates different aspects of event structure and
prediction quality. The evaluation metric for each
task is the F1-score, computed from precision and
recall. The final score is a weighted combination of
the three task-specific F1-scores using the formula:

Overall Score = 0.3× Task 1F1 + 0.3× Task 2F1

+ 0.4× Task 3F1

This weighting reflects the relative importance
of each task in capturing comprehensive event un-
derstanding.

4.1 BERTag
BERT-base model which is downstreamed for NER
tasks was not able to perform upto the mark as
it was trained for BIO-tagged NERs. Our event
schema being so extent, fine-tuning for such a small
dataset and small number of epochs was not suffi-
cient.

Task Precision (%) Recall (%) F1-score (%)

Task 1 16.15 22.41 18.77
Task 2 3.14 5.08 3.88
Task 3 3.05 4.93 3.77

Overall Score – – 8.31

Table 2: Evaluation results across tasks and final
weighted score.

Table 2 presents the precision, recall, and F1-
score for each task, with the final overall score
computed as a weighted sum of the individual
F1-scores, resulting in an overall performance of
8.31%.

4.2 T2E2
Text2Event2 is trained on ACE05EN which has
similar event schema to the schema provided to
us. Fine-tuning it to the transcripts of the whisper-
medium makes it a little bit more robust to haluci-
nations and errors of ASR.

Task Precision (%) Recall (%) F1-score (%)

Task 1 64.5390 64.3868 64.4628
Task 2 37.0787 38.3164 37.6874
Task 3 34.4101 35.5588 34.9750

Overall Score – – 44.6356

Table 3: Evaluation results across tasks and final
weighted score.

Table 3 shows the performance of the proposed
model across all tasks, achieving an overall F1-

score of 44.6356%, calculated using the weighted
combination of individual task scores. While the
original Text2Event model reports an F1 score
of approximately 72% on clean ACE05EN text,
our model was evaluated on noisy ASR transcripts
generated from the audio-only dataset. This chal-
lenging setup, combined with CPU-based training
and a limited number of labeled samples, resulted
in a top performance of 44.63% F1 in the shared
task—demonstrating the effectiveness and robust-
ness of our system.

This impressive overall score of 44.6356% en-
abled us to secure Rank 1 in the Speech-to-Event
Extraction Shared Task, demonstrating the effec-
tiveness of our proposed approach across all evalu-
ation metrics.

5 Limitations

A major limitation in our pipeline stems from the
use of ASR-generated transcripts without access
to gold textual input. Whisper, while state-of-the-
art, may hallucinate or omit important information,
which gets propagated into the event extraction
phase. Furthermore, due to the exhaustion of GPU
quotas on Kaggle, the majority of training was con-
ducted on CPU using LoRA, which limited the
number of training epochs and speed of experimen-
tation.

For us, resource constraint has also been a major
problem. We could only fine-tune the event extrac-
tion models for 3 epochs and limited GPU usage
leading to large amount of training and testing time.

6 Future Work

Event-tagged data can be expanded through human-
annotated efforts, albeit at a significant cost in
terms of time and labor (Ahn, 2006). Alternatively,
data augmentation techniques can be employed to
enhance dataset size and diversity. One effective
method involves replacing event-triggering words
and their corresponding arguments with appropri-
ate synonyms using tools such as spaCy (Honnibal
et al., 2020) or WordNet (Miller, 1994) (Lin et al.,
2020).

Moreover, while existing datasets like CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003)
are comprehensive in terms of named entity recog-
nition, their event schemas remain relatively lim-
ited. Once the challenge of insufficient annotated
data is addressed, alternative architectures beyond
transformer-based models—such as Bi-directional
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LSTMs (Huang et al., 2015) and Graph Neural
Networks (Scarselli et al., 2009) with attention
mechanisms—can be explored. These models are
capable of capturing deeper semantic relationships,
thereby improving the performance of event extrac-
tion systems, as demonstrated in (Liu et al., 2018)
(Balali et al., 2021) (Fei et al., 2023).

7 Conclusion

This work demonstrates that effective event
extraction from speech is possible even un-
der compute-constrained, noisy-input scenarios.
Through the use of PEFT via LoRA and a ro-
bust ASR+transformer pipeline, our system out-
performed all other submissions in the XLLM
Shared Task II. Future work will explore improv-
ing robustness to ASR noise and enhancing low-
resource adaptability via data augmentation and
semi-supervised learning.
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