
Proceedings of the The 9th Workshop on Online Abuse and Harms (WOAH), pages 482–489
August 1, 2025 ©2025 Association for Computational Linguistics

Graph of Attacks with Pruning: Optimizing Stealthy Jailbreak Prompt
Generation for Enhanced LLM Content Moderation

Daniel Schwartz, Dmitriy Bespalov, Zhe Wang, Ninad Kulkarni, Yanjun Qi
Amazon Bedrock Science

{dansw, dbespal, zhebeta, ninadkul, yanjunqi}@amazon.com

Abstract

As large language models (LLMs) become in-
creasingly prevalent, ensuring their robustness
against adversarial misuse is crucial. This
paper introduces the GAP (GRAPH OF AT-
TACKS WITH PRUNING) framework, an ad-
vanced approach for generating stealthy jail-
break prompts to evaluate and enhance LLM
safeguards. GAP addresses limitations in exist-
ing tree-based LLM jailbreak methods by im-
plementing an interconnected graph structure
that enables knowledge sharing across attack
paths. Our experimental evaluation demon-
strates GAP’s superiority over existing tech-
niques, achieving a 20.8% increase in attack
success rates while reducing query costs by
62.7%. GAP consistently outperforms state-of-
the-art methods for attacking both open and
closed LLMs, with attack success rates of
≥96%. Additionally, we present specialized
variants like GAP-AUTO for automated seed
generation and GAP-VLM for multimodal at-
tacks. GAP-generated prompts prove highly
effective in improving content moderation sys-
tems, increasing true positive detection rates by
108.5% and accuracy by 183.6% when used for
fine-tuning.

1 Introduction

With the increasing adoption of large-language
models (LLMs) across diverse applications, ensur-
ing their reliability and robustness against adver-
sarial misuse has become a critical priority (Chao
et al., 2023). Jailbreaking techniques, which in-
volve crafting adversarial prompts to bypass an
LLM’s safeguards, pose a persistent challenge to
AI security and responsible deployment (Shen et al.,
2024; Mangaokar et al., 2024; Wei et al., 2024; Li
et al., 2023; Guo et al., 2024). These methods
can induce models to generate harmful, biased, or
unauthorized content while avoiding detection by
automated moderation systems (Perez et al., 2022),
highlighting the need for comprehensive diagnos-

Guardrail Seeds GPTFuzzer GCG TAP GAP

Perplexity 50.0% 31.4% 100.0% 2.0% 2.0%
Llama Guard 84.0% 81.6% 66.2% 58.0% 58.0%

Llama Guard-2 100.0% 89.8% 72.8% 64.0% 64.0%
Prompt Guard 50.0% 100.0% 99.0% 22.0% 16.0%

GAP-Enhanced
Prompt Guard

68.0% 100.0% 100.0% 66.0% 70.0%

Table 1: True positive rate (TPR) comparison of various
guardrails detecting prompts generated from multiple
jailbreak methods (on AdvBench seeds). Lower TPR
indicates better evasion and significant reliability con-
cerns. The last row shows how GAP-generated data
can be used to enhanced content moderation systems,
demonstrating substantially improved detection capabil-
ities.

tic frameworks to assess and improve foundation
model reliability.

Existing jailbreaking methods fall into three
broad categories: (a) white-box attacks, which
leverage direct model access for adversarial opti-
mization (Zou et al., 2023; Geisler et al., 2024); (b)
gray-box attacks, which involve techniques such
as backdoor injection or poisoned retrieval (Ding
et al., 2023; Shi et al., 2023; Zou et al., 2024; Wang
and Shu, 2023); and (c) black-box attacks, which
require only API access and thus represent the most
realistic scenario for evaluating model robustness
in real-world deployments (Wei et al., 2024; Li
et al., 2023; Yu et al., 2023; Yuan et al., 2023).

The Tree of Attacks with Pruning (TAP) ap-
proach (Mehrotra et al., 2023) introduced a tree-
structured exploration process for iterative prompt
refinement, generating increasingly effective adver-
sarial inputs that appear human-like and stealthy.
As shown in Table 1, TAP-generated jailbreak
prompts consistently demonstrate low detection
true positive rate (TPR) when run against recent
guardrails, indicating significant vulnerabilities in
these safeguard systems.

While TAP demonstrated effectiveness in gen-
erating stealthy jailbreaks, we identified several

482

limitations: primarily, TAP restricts the explo-
ration of prompt refinement to individual paths,
with no crossover or shared context across different
branches. This isolated approach results in redun-
dant queries and inefficient coverage of the search
space for prompt refinement. Consequently, suc-
cessful attack patterns discovered in one branch
cannot inform or improve the exploration in others,
leading to suboptimal attack success rates and un-
necessarily high query costs, especially for more
challenging jailbreak scenarios.

To address these limitations, we developed the
GAP (GRAPH OF ATTACKS WITH PRUNING)
framework, which: (1) converts the tree-based
prompt exploration process into an interconnected
graph structure, (2) implements global context
maintenance to aggregate successful jailbreak gen-
eration strategies, and (3) facilitates graph-based
knowledge sharing for more informed prompt re-
finement.

Our primary contributions include: (1) The in-
troduction of the core GAP framework, enabling
dynamic knowledge sharing across attack paths
via a unified attack graph. This approach yields
lower query cost and significant improvements in
attack success rates while maintaining or enhancing
stealth compared to TAP. (2) We further develop
specialized GAP variants addressing specialized
deployment challenges: GAP-AUTO automates ini-
tialization by generating seed prompts from content
moderation policies, while GAP-VLM extends the
framework to jailbreak vision-language models. (3)
A comprehensive experimental evaluation of GAP
on various open and closed LLMs. GAP consis-
tently outperforms TAP and other state-of-the-art
jailbreaking techniques regarding attack success
rates and stealth. (4) Most significantly, we demon-
strate how GAP-generated insights can directly
improve foundation model reliability through data
augmentation and fine-tuning of safeguards.

2 Methodology

GAP is a jailbreaking method that attempts to
bypass LLM safeguards through a structured ap-
proach of generating and refining multiple attack
paths. It leverages other LLMs to generate and re-
fine prompt variations aimed at tricking the target
LLM—commonly referred to as jailbreaking. The
core of GAP includes three core components: an
attacker LLM A that generates jailbreak attempts,
a target LLM T under evaluation (attack), and a

judge LLM J that rates the effectiveness of gener-
ated prompt attempts and the harmfulness of result-
ing responses.

2.1 GAP (GRAPH OF ATTACKS WITH

PRUNING)

Given an ordered set of initial seed prompts
S = {s1, s2, . . . , s|S|}, the attacker LLM A
generates candidate jailbreak prompts Pi =
{pi,1, pi,2, . . . , pi,b} at each iteration i. The GAP
core algorithm includes three stages: (1) The child-
generation step where the attacker LLM creates
multiple prompt variants designed to more effec-
tively jailbreak the target LLM. (2) The pruning
step where the judge LLM evaluates branches, re-
moves unsuccessful ones, and focuses effort on
variants most effective at eliciting undesired re-
sponses. (3) The iteration step where successful
branches are further explored until finding variants
that jailbreak the target LLM by eliciting harmful
outputs.

For the pruning step, GAP implements a two-
phase pruning strategy: (1) Phase 1 (Off-topic
pruning): The judge LLM removes branches irrel-
evant to the original harmful request. (2) Phase 2
(Highest-scoring pruning): After evaluating tar-
get LLM responses, only branches with the highest
scores si,j = J (pi,j , ri,j) (up to width w) advance
to the next iteration.

For the child-generation step, GAP’s key inno-
vation is its global context C = {h1, h2, . . . , hn}
that aggregates successful attack patterns from
prior generations across all branches and sequential
seeds. For each prompt node p, GAP maintains
a history hp of [prompt, response, score] tuples
along its refinement path. Unlike TAP’s isolated
tree structure, where each seed generates an in-
dependent attack path, GAP maintains a unified
attack graph where successful strategies are shared
and reused.

GAP’s exploration follows an interconnected
graph-structured thought process. The global con-
text enables knowledge transfer through two key
mechanisms: (1) Path Aggregation: All success-
ful attack paths (those achieving high scores from
the judge) are maintained in a global memory
buffer, sorted by effectiveness. (2) Context-Aware
Generation: When generating new prompt candi-
dates, the attacker LLM receives the top-k most
successful attack patterns from the global context
as part of its input. This allows the model to iden-
tify and apply successful strategies from previous

483

seeds.

2.2 GAP Variants for Different Scenarios

To address various deployment challenges while
maintaining generation efficiency, we have devel-
oped several specialized variants of GAP:

GAP-AUTO eliminates the dependency on man-
ually crafted seed examples through automated gen-
eration. The system decomposes high-level con-
tent moderation policies into specific behavioral
constraints, then generates diverse seed prompts
for each constraint using a two-phase strategy: (1)
Moderation Policy Decomposition: The attacker
model decomposes high-level content policies into
specific behavioral constraints. (2) Seed Gener-
ation: For each identified constraint, the system
generates a variety of seed prompts, ensuring a
comprehensive coverage of potential attack vec-
tors.

This automated process not only removes the
need for manual seed curation but also ensures
a wide-ranging exploration of possible jailbreak-
ing strategies. Using this approach, we generate
two complementary datasets: GAP-GUARDDATA,
containing balanced benign and harmful prompts
derived directly from content policies, and GAP-
GUARDATTACKDATA, which consists of the orig-
inal benign prompts together with GAP-refined
stealthy versions of the harmful prompts.

GAP-VLM extends the framework to vision-
language models (VLMs) by converting successful
text-based jailbreaks into image-embedded attacks
using a modified version of FigStep (Gong et al.,
2023). This adaptation involves: (1) Text-to-Image
Conversion: Converting harmful prompts into ty-
pographic images through paraphrasing into declar-
ative statements and numbered visual encoding.
(2) Prefix Enhancement: Incorporating the "Sure,
here" suffix technique (Wang and Qi, 2024) into
the typographic image generation process.

3 Experiments

We present a comprehensive evaluation of the GAP
framework and its variants. We begin by outlin-
ing our experimental setup, then present results
addressing four research questions: (RQ1): How
does GAP compare to TAP in terms of attack suc-
cess rate and query efficiency? (RQ2): How does
GAP perform across different modalities (text-only
vs. multimodal attacks)? (RQ3): How effective
is GAP at improving content moderation through

Table 2: Datasets Used for Jailbreak Generation and
Evaluation

Dataset Size Composition Usage Description

GAP-GUARDDATA 2,171 prompts 1,087 benign, 1,084 harmful Seed generation Initial dataset for GAP refinement
GAP-GUARDATTACKDATA 2,166 prompts 1,087 benign, 1,079 stealthy harmful Jailbreak evaluation GAP-refined dataset
AdvBench Seeds 50 seeds 50 harmful across 32 categories Baseline comparison Diverse harmful behaviors
JBB Seeds 200 seeds 100 benign, 100 harmful Generalization testing Balanced dataset for robustness testing

fine-tuning via data augmentation? (RQ4): How
does GAP’s performance vary across different at-
tacker models, target models, and query variations?

3.1 Experimental Setup
We implemented GAP variants in Python using at-
tacker models as described in our variants. We em-
ploy three categories of models in our experiments:
(1) Attacker Models: GAP-M uses Mistral-123B-
v2407 while GAP-V uses Vicuna-13B-v1.5 as the
attacker LLM. (2) Judge Model: GPT-4 serves
as the judge model for assessing prompt relevance
and jailbreak success across all variants. (3) Target
Models: We evaluate against GPT-3.5, Gemma-
9B-v2, and Qwen-7B-v2.5 as representative target
LLMs. For multimodal experiments, we use GPT-
4o as the target VLM.

Hyperparameters: We use consistent settings
across all experiments unless noted. We set branch-
ing factor (b) to 5, allowing each node to generate
five candidate prompts, and maximum width (w)
to 3, controlling nodes retained after pruning. We
allow five refinement iterations per seed (maximum
depth d = 5), maintain 10 recent history entries in
the global context (k = 10), and use sampling tem-
perature 0.7 for the attacker model. These values
were selected based on preliminary experimenta-
tion.

Datasets: We use multiple datasets throughout
our experiments. For RQ1 and RQ4, we select the
AdvBench subset (50 seeds across 32 categories)
as seeds for jailbreak prompt generations (Chao
et al., 2023). RQ2 uses the same AdvBench sub-
set for both text-only and multimodal VLM attack
scenarios. For RQ3, we employ three different test
datasets: the Toxic Chat (Lin et al., 2023), Ope-
nAI Moderation (Markov et al., 2022), and custom
GAP-GUARDATTACKDATA dataset.

Metrics: Our primary metrics include: (1) At-
tack Success Rate (ASR): Percent of successful
jailbreaks. (2) Query Efficiency: Average num-
ber of queries per successful jailbreak. (3) True
Positive Rate (TPR): For guardrails, percent of
harmful prompts correctly flagged. (4) Accuracy:
Correct classification rate. (5) F1 Score: Harmonic
mean of precision and recall.

484

Table 3: ASR and Query Efficiency when seeding with
AdvBench Subset of 50 Seeds. GAP achieves higher
success rates with fewer queries across all models com-
pared to TAP.

Method Metric GPT-3.5 Gemma-9B-v2 Qwen-7B-v2.5 Average Rel. Improvement

GAP-M
(Mistral Attacker)

ASR % 96% 100% 100% 98.7% +20.8%
Avg. # Queries 10.4 4.22 6.72 7.11 -62.7%

GAP-V
(Vicuna Attacker)

ASR % 92% 96% 96% 94.7% +15.9%
Avg. # Queries 14.2 6.66 11.62 10.83 -43.2%

TAP
(Mehrotra et al., 2023)

ASR % 78% 74% 96% 82.7% -
Avg. # Queries 26.3 14.48 16.44 19.07 -

3.2 Attack Performance Analysis (RQ1)
Table 3 compares GAP variants with TAP (Mehro-
tra et al., 2023) using 50 harmful AdvBench seed
prompts. On GPT-3.5, GAP-M achieves 96% ASR
with just 10.4 queries, while TAP reaches only 78%
with 26.3 queries. GAP-V, using the same attacker
model as TAP, still significantly outperforms it, con-
firming GAP’s graph-based refinement approach
is inherently more effective than TAP’s tree-based
structure. This advantage extends across models,
with GAP-M reaching 100% ASR against both
Gemma-9B-v2 and Qwen-7B-v2.5 with minimal
queries.

Figure 1 further illustrates GAP’s superiority
across varying query budgets. Both GAP variants
achieve higher success rates with fewer queries
compared to TAP across all target models.

3.3 Multimodal Attack Evaluation (RQ2)
To evaluate GAP’s performance across different
modalities, we conducted experiments on both text-
only and multimodal attacks using GAP. Table 4
presents the results of this comparison. For text-
only attacks against target GPT-3.5, GAP demon-
strates superior performance, with GAP-M achiev-
ing a 96.0% ASR and GAP-V reaching 92.0%,
both significantly outperforming TAP’s 78.0%.
When performing multimodal attacks against GPT-
4o, while the overall success rates are lower com-
pared to text-only attacks, GAP still outperforms
TAP. GAP-V-VLM achieves the highest ASR
of 46.0%, followed closely by GAP-M-VLM at
44.0%, both surpassing TAP-VLM’s 40.0%. These
results demonstrate GAP’s effectiveness across
both text-only and multimodal domains.

3.4 Content Moderation Enhancement (RQ3)
To assess GAP’s effectiveness in enhancing content
moderation, we used our GAP-AUTO approach to
generate the GAP-GUARDDATA seed dataset. This
dataset comprises 2,171 prompts: 1,087 benign and
1,084 harmful, automatically generated using the
two-phase framework that decomposes high-level

content moderation policies into specific behavioral
constraints and then creates diverse prompts for
each identified constraint.

We then applied the GAP-M method to the
harmful prompts in GAP-GUARDDATA, success-
fully transforming 1,079 out of 1,084 (99.54% suc-
cess rate) into stealthy jailbreak prompts. This pro-
cess resulted in our GAP-GUARDATTACKDATA

dataset, containing a total of 2,166 prompts:
the original 1,087 benign prompts from GAP-
GUARDDATA and the 1,079 stealthy harmful jail-
break prompts generated by GAP-M.

The quality of a training dataset for content mod-
eration depends significantly on its diversity and
representativeness of potential attacks. Table 5 con-
firms GAP-GUARDATTACKDATA’s effectiveness
through superior diversity metrics: higher unique
n-gram counts, increased entropy, and lower Self-
BLEU scores compared to baseline datasets—all
indicating greater linguistic diversity and reduced
within-dataset similarity.

Leveraging this high-quality dataset, we fine-
tuned the PromptGuard model using HuggingFace
SFTTrainer with QLoRA. Table 6 demonstrates
substantial improvements in PromptGuard’s per-
formance after fine-tuning. Across all three test
domains, we observe significant increases in TPR,
accuracy, and F1 score. Notably, on the ToxicChat
dataset, TPR increased from 14.0% to 88.4%, and
accuracy from 5.1% to 93.8%.

Table 1 further demonstrates the effectiveness
of using GAP for data augmentation through the
fine-tuned GAP-Enhanced Prompt Guard. While
GAP shows superior evasion capabilities against
the original Prompt Guard (16.0% TPR vs. TAP’s
22.0%), the GAP-Enhanced Prompt Guard signif-
icantly improves detection capabilities across all
jailbreak methods. This fine-tuned model’s TPR
for detecting GAP prompts increases from 16.0%
to 70.0%, and against TAP from 22.0% to 66.0%.

3.5 Configuration Analysis (RQ4)
To understand GAP’s operational characteristics,
we analyzed its performance across three key di-

Table 4: Text-only vs. multimodal attack success rates
(%). GAP variants outperform TAP in both settings.

Attack Methods GPT-3.5 Attack Methods GPT-4o
(text-only) (multimodal)

GAP-M 96.0 GAP-M-VLM 44.0
GAP-V 92.0 GAP-V-VLM 46.0
TAP 78.0 TAP-VLM 40.0

485

10 20 30 40 50 60
Target LLM Query Budget

0

20

40

60

80

100
At

ta
ck

 S
uc

ce
ss

 R
at

e
(%

)
GAP Jailbreak Success Rates on GPT3.5

GAP-M
GAP-V
TAP

(a) GPT-3.5

10 20 30 40 50 60
Target LLM Query Budget

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

GAP Jailbreak Success Rates on Gemma2-9B

GAP-M
GAP-V
TAP

(b) Gemma-9B-v2

10 20 30 40 50 60
Target LLM Query Budget

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

GAP Jailbreak Success Rates on Qwen2.5-7B

GAP-M
GAP-V
TAP

(c) Qwen-7B-v2.5

Figure 1: GAP vs TAP Performance Across Target Models. Vulnerability detection success rates for GAP-M (green
circles), GAP-V (blue squares), and TAP (red triangles) against increasing query budgets across three different
target models, demonstrating GAP variants’ consistent superior performance and efficiency.

Metric Unique n-grams (%) ↑ Entropy ↑ Self-BLEU ↓
GAP-GUARDATTACKDATA 94.36 13.72 0.0063

AdvBench seeds (Chao et al., 2023) 85.99 8.89 0.1339
JBB seeds (Chao et al., 2024) 81.25 10.27 0.1171

Table 5: Diversity metrics of jailbreak seeds. Higher
unique n-grams and entropy indicate greater diver-
sity, while lower Self-BLEU reflects less similarity be-
tween prompts. GAP-GUARDATTACKDATA outper-
forms baseline datasets.

Table 6: Improved In-Domain TPR and Accuracy of
Prompt Guard after fine-tuning with GAP-generated
jailbreak prompts. Fine-tuning results in significant
improvements across three different test domains.

Model Metric GAP-GuardAttackData ToxicChat OpenAI Mod Average Rel. Improvement

FT
TPR 86.1% 88.4% 59.4% 78.0% +108.5%

Accuracy 90.6% 93.8% 53.3% 79.2% +183.6%
F1 Score 0.904 0.326 0.605 0.612 +98.1%

Base
TPR 64.6% 14.0% 39.2% 37.4% -

Accuracy 34.9% 5.1% 46.0% 27.9% -
F1 Score 0.504 0.005 0.467 0.309 -

mensions: attacker model quality, target model
variation, and query budget constraints.

First, attacker model quality significantly im-
pacts effectiveness. As shown in Table 3, GAP-M
(using the larger Mistral model) consistently outper-
forms GAP-V across all targets, achieving higher
attack success (98.7% vs 94.7%) with fewer queries
(7.11 vs 10.83). Despite this difference, even GAP-
V substantially outperforms TAP while using the
same attacker model, confirming that GAP’s graph-
based structure provides inherent benefits regard-
less of model selection.

Second, GAP’s advantages persist across differ-
ent target models. Figure 1 illustrates how both
GAP variants consistently outperform TAP against
diverse model architectures and sizes. This cross-
model effectiveness demonstrates the framework’s
adaptability to different defense mechanisms and
model behaviors.

Finally, the query budget analysis reveals GAP’s

efficiency. Figure 1a shows how both variants
achieve higher success with fewer queries against
GPT-3.5 compared to TAP, with GAP-M main-
taining a significant edge throughout all budget
constraints.

These findings collectively suggest that while
GAP’s graph-based approach provides inherent
advantages over tree-based alternatives, its effec-
tiveness scales with attacker model capability. The
robust performance across different dimensions in-
dicates GAP provides a reliable framework for
comprehensive model evaluation regardless of op-
erational constraints.

4 Conclusions & Future Work

We present GAP, a significant upgrade over TAP
that transforms isolated tree structures into an in-
terconnected graph with global context mainte-
nance for knowledge sharing across attack paths.
Our evaluation demonstrated that this approach
achieves a 20.8% increase in attack success rates
while reducing query costs by 62.7% compared
to TAP. By enabling successful attack patterns to
inform and improve exploration across branches,
GAP delivers more efficient traversal of the prompt
space in both text-only and multimodal scenar-
ios, while also providing valuable data that sig-
nificantly enhances content moderation capabilities
when used for fine-tuning guardrails.

Future work includes presenting evaluation over
an extended set of leading LLMs, comparison
against latest/concurrent jailbreaking methods, con-
ducting ablation studies for additional hyperparam-
eters, exploring new graph-based algorithms and
heuristics, and investigating how jailbreaking arti-
facts can be leveraged to devise effective defensive
techniques in practice.

486

5 Limitations

While our work demonstrates significant improve-
ments in jailbreak detection and content modera-
tion, several limitations should be acknowledged.
The effectiveness of GAP depends heavily on
the quality of both attacker and judge models,
with our experiments primarily using Mistral-123B
and Vicuna-13B as attackers and GPT-4 as the
judge, meaning performance may vary with dif-
ferent model combinations or as these models are
updated. Our evaluation focused exclusively on
English-language content, leaving GAP’s effec-
tiveness for multilingual jailbreak attempts and
content moderation untested, particularly for low-
resource languages where LLMs typically demon-
strate reduced capabilities. Despite being more
efficient than tree-based alternatives, the graph-
based approach still requires substantial compu-
tational resources for generating and evaluating
multiple attack paths, potentially limiting deploy-
ment in resource-constrained environments. Al-
though we demonstrated GAP’s effectiveness as a
testing framework, determined adversaries might
develop counter-strategies specifically targeting our
graph pruning mechanisms or knowledge sharing
components. Our evaluation, while covering multi-
ple target models, could benefit from broader test-
ing across emerging LLM architectures and closed-
source models to better establish generalizability.
Finally, the controlled experimental settings may
not fully capture the complexities of real-world
deployment scenarios where user interactions are
more diverse and unpredictable than our test cases,
potentially affecting both the attack success rates
and the performance of content moderation systems
fine-tuned using GAP-generated data.

6 Ethics Statement

Our research on GAP explores advanced jailbreak-
ing techniques for LLMs, which raises important
ethical considerations regarding potential misuse.
We present a comprehensive ethical framework that
addresses both the risks and benefits of this re-
search, along with our mitigation strategies and
broader impact assessment.

Despite the inherent risks of developing ad-
vanced jailbreaking techniques, we believe in the
importance of this research and its transparent dis-
closure. The graph-based methods presented here
naturally extend existing techniques in the litera-
ture, suggesting that motivated individuals could

develop similar approaches independently. Further-
more, systematic investigation of these vulnerabili-
ties provides critical insights for LLM developers
to strengthen their safety mechanisms against so-
phisticated attacks.

To responsibly manage potential risks, we have
implemented comprehensive safeguards across
multiple dimensions. Throughout the paper, we
have incorporated clear warnings regarding con-
tent nature and potential misuse. Access to GAP-
generated prompts and implementation code is re-
stricted and limited to verified researchers and in-
stitutions. We provide detailed guidelines for de-
veloping robust defense mechanisms and content
moderation systems.

The net impact of our research extends beyond
immediate security improvements in several sig-
nificant ways. Our work directly contributes to
stronger LLM safeguards, as demonstrated by sig-
nificant improvements in detection capabilities. By
systematically studying vulnerabilities, we enable
the development of preventive measures before po-
tential exploits are discovered independently.

References
Patrick Chao, Edoardo Debenedetti, Alexander Robey,

Maksym Andriushchenko, Francesco Croce, Vikash
Sehwag, Edgar Dobriban, Nicolas Flammarion,
George J Pappas, Florian Tramer, and 1 others. 2024.
Jailbreakbench: An open robustness benchmark for
jailbreaking large language models. arXiv preprint
arXiv:2404.01318.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Peng Ding, Jun Kuang, Dan Ma, Xuezhi Cao, Yunsen
Xian, Jiajun Chen, and Shujian Huang. 2023. A
wolf in sheep’s clothing: Generalized nested jailbreak
prompts can fool large language models easily. arXiv
preprint arXiv:2311.08268.

Simon Geisler, Tom Wollschläger, MHI Abdalla, Jo-
hannes Gasteiger, and Stephan Günnemann. 2024.
Attacking large language models with projected gra-
dient descent. arXiv preprint arXiv:2402.09154.

Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang,
Tianshuo Cong, Anyu Wang, Sisi Duan, and Xiaoyun
Wang. 2023. FigStep: Jailbreaking large vision-
language models via typographic visual prompts.
Preprint, arxiv:2311.05608 [cs].

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin,
and Bin Hu. 2024. Cold-attack: Jailbreaking llms

487

https://doi.org/10.48550/arXiv.2311.05608
https://doi.org/10.48550/arXiv.2311.05608

with stealthiness and controllability. arXiv preprint
arXiv:2402.08679.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,
Tongliang Liu, and Bo Han. 2023. Deepinception:
Hypnotize large language model to be jailbreaker.
arXiv preprint arXiv:2311.03191.

Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang,
Yuxin Guo, Yujia Wang, and Jingbo Shang. 2023.
Toxicchat: Unveiling hidden challenges of toxicity
detection in real-world user-ai conversation. Preprint,
arXiv:2310.17389.

Neal Mangaokar, Ashish Hooda, Jihye Choi, Shreyas
Chandrashekaran, Kassem Fawaz, Somesh Jha, and
Atul Prakash. 2024. Prp: Propagating universal per-
turbations to attack large language model guard-rails.
arXiv preprint arXiv:2402.15911.

Todor Markov, Chong Zhang, Sandhini Agarwal, Tyna
Eloundou, Teddy Lee, Steven Adler, Angela Jiang,
and Lilian Weng. 2022. A holistic approach
to undesired content detection. arXiv preprint
arXiv:2208.03274.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik,
Blaine Nelson, Hyrum Anderson, Yaron Singer, and
Amin Karbasi. 2023. Tree of attacks: Jailbreak-
ing black-box llms automatically. arXiv preprint
arXiv:2312.02119.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red team-
ing language models with language models. arXiv
preprint arXiv:2202.03286.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen,
and Yang Zhang. 2024. " do anything now": Charac-
terizing and evaluating in-the-wild jailbreak prompts
on large language models. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, pages 1671–1685.

Jiawen Shi, Yixin Liu, Pan Zhou, and Lichao Sun. 2023.
Badgpt: Exploring security vulnerabilities of chatgpt
via backdoor attacks to instructgpt. arXiv preprint
arXiv:2304.12298.

Haoran Wang and Kai Shu. 2023. Backdoor activation
attack: Attack large language models using activa-
tion steering for safety-alignment. arXiv preprint
arXiv:2311.09433.

Zhe Wang and Yanjun Qi. 2024. A closer look at adver-
sarial suffix learning for jailbreaking LLMs. In ICLR
2024 Workshop on Secure and Trustworthy Large
Language Models.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.
2024. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems,
36.

Jiahao Yu, Xingwei Lin, and Xinyu Xing. 2023. Gpt-
fuzzer: Red teaming large language models with
auto-generated jailbreak prompts. arXiv preprint
arXiv:2309.10253.

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang,
Jen-tse Huang, Pinjia He, Shuming Shi, and
Zhaopeng Tu. 2023. Gpt-4 is too smart to be safe:
Stealthy chat with llms via cipher. arXiv preprint
arXiv:2308.06463.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik-
son. 2023. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan
Jia. 2024. Poisonedrag: Knowledge poisoning at-
tacks to retrieval-augmented generation of large lan-
guage models. arXiv preprint arXiv:2402.07867.

488

https://arxiv.org/abs/2310.17389
https://arxiv.org/abs/2310.17389
https://openreview.net/forum?id=o9BWfjgbGT
https://openreview.net/forum?id=o9BWfjgbGT

Algorithm 1 GAP (GRAPH OF ATTACKS WITH

PRUNING)
Require: Query Q, branching-factor b, maximum

width w, maximum depth d
Ensure: Jailbreak prompt p or failure

1: Initialize graph G with root node containing
empty conversation history and query Q

2: while depth of G ≤ d do
3: for each leaf node ℓ in G do
4: C ← {} ▷ Initialize empty set for

conversation histories
5: for each path from root to a leaf in G

do
6: h← Concatenate all [p, r, s] tuples

in the path
7: C ← C ∪ {h} ▷ Add path history

to set
8: end for
9: global_context ←

SortByMaxScore(C)
10: for j ← 1 to b do
11: pj ← A(Q, global_context) ▷

Generate prompt using Attacker
12: sj ← Retrieve effectiveness of pj

based on global_context
13: end for
14: pbest ← argmaxj sj
15: new_history ← ℓ.history +

[pbest, response to be generated, score to be calculated]
16: Add child of ℓ with prompt pbest and

history new_history
17: end for
18: Prune (Phase 1): Delete off-topic leaf

nodes using J
19: Query and Assess: Generate responses r

using T and evaluate with J for remaining
leaf nodes

20: if successful jailbreak found then return
jailbreak prompt

21: end if
22: Prune (Phase 2): Keep top w leaves by

scores s from J
23: end while
24: return failure

Algorithm 2 GAP-AUTO Seed Generation
Require: High-level content policies

1: B ← DecomposeIntoBehaviors(content poli-
cies)

2: Sbenign, Sharmful ← {}, {}
3: for each behavior b in B do
4: sbenign ← GenerateBenignPrompt(b)
5: sharmful ← GenerateHarmfulPrompt(b)
6: Sbenign ← Sbenign ∪ {sbenign}
7: Sharmful ← Sharmful ∪ {sharmful}
8: end for
9: GAP-GUARDDATA← Sbenign ∪ Sharmful

10: Sattack ← {}
11: for each prompt p in Sharmful do
12: pattack ← ApplyGAP (p)
13: Sattack ← Sattack ∪ {pattack}
14: end for
15: GAP-GUARDATTACKDATA ← Sbenign ∪

Sattack

16: return GAP-GUARDDATA, GAP-
GUARDATTACKDATA

489

