
Proceedings of the 4th Table Representation Learning Workshop, pages 34–46
July 31, 2025 ©2025 Association for Computational Linguistics

R3 : “This is My SQL, Are You With Me?” A Consensus-Based
Multi-Agent System for Text-to-SQL Tasks

Hanchen Xia∗ , Feng Jiang∗ , Naihao Deng , Cunxiang Wang , Guojiang Zhao
Rada Mihalcea , Yue Zhang

School of Mathematical Science, Shanghai Jiao Tong University
School of Engineering, Westlake University

University of Michigan Carnegie Mellon University

Abstract

Large Language Models (LLMs) have demon-
strated exceptional performance across diverse
tasks. To harness their capabilities for Text-
to-SQL, we introduce R3 (Review-Rebuttal-
Revision), a consensus-based multi-agent sys-
tem for Text-to-SQL tasks. R3 achieves the
new state-of-the-art performance of 89.9 on the
Spider test set. In the meantime, R3 achieves
61.80 on the Bird development set. R3 out-
performs existing single-LLM and multi-agent
Text-to-SQL systems by 1.3% to 8.1% on Spi-
der and Bird, respectively. Surprisingly, we find
that for Llama-3-8B, R3 outperforms chain-of-
thought prompting by over 20%, even outper-
forming GPT-3.5 on the Spider development
set. We open-source our codebase at https:
//github.com/1ring2rta/R3.

1 Introduction

Text-to-SQL, the task of converting natural lan-
guage to SQL queries, enables non-technical
users to access databases with natural language
(Deng et al., 2022; Katsogiannis-Meimarakis and
Koutrika, 2023). Recently, Large Language Mod-
els (LLMs) have made significant progress on vari-
ous tasks (Touvron et al., 2023; OpenAI, 2023).

Although various methods were proposed to en-
hance the reasoning abilities of LLMs (Wei et al.,
2022; Yao et al., 2023; Besta et al., 2024), they
are still facing challenges with Text-to-SQL tasks
(Li et al., 2023b; Hong et al., 2024). The LLM-
based multi-agent system leverages collective in-
telligence from a group of LLMs and has achieved
exceptional performance across various tasks (Park
et al., 2023; Hong et al., 2023; Xu et al., 2023),
but little work explores using them on Text-to-SQL.
The existing multi-agent Text-to-SQL system first
decomposes the task into multiple subtasks, which
are then accomplished step-by-step in a pipeline
by agents (Wang et al., 2023). While achieving re-
markable performance, such decomposition-based

Figure 1: R3 Architecture. n Reviewer agents, each
with distinct characteristics, are created to review the
generated SQL and its execution result. The process
continues until the master node (SQL-Writer agent) and
the other nodes reach a consensus, at which point the
system outputs the final SQL.

systems necessitate extensive prompt engineering
and logic design.

We propose R3, a consensus-based multi-agent
system for Text-to-SQL tasks that draws inspiration
from the peer-review mechanism. In our designed
framework, the LLM does not need to be divided
into sub-tasks such as column selection, schema
linking, and so on. Instead, it is split into an SQL
Writer and multiple Reviewers who provide feed-
back based on the execution results. Once the gen-
erated SQL query is confirmed to be executable,
the system enters a review process, where the exe-
cution results guide the SQL Writer and reviewers
to refine the SQL. Through rounds of "review,"
"negotiation or rebuttal," and "revision," the SQL
Writer and reviewers ultimately reach a consensus
and deliver a solution with collective agreement
(see Figure 1).

We test R3 on the popular Spider and Bird bench-
marks. R3 outperforms the existing single LLM
as well as the multi-agent Tex-to-SQL systems by
1.3% to 8.1% on Spider and Bird, and set new state-
of-the-art (SOTA) performance of 89.9 on Spider

34

https://github.com/1ring2rta/R3
https://github.com/1ring2rta/R3

dataset. Surprisingly, we find that for Llama-3-
8B, R3 outperforms chain-of-thought prompting
by over 20%, even outperforming GPT-3.5 on the
Spider-Dev set.

In summary, our contributions are several-fold:

1. To the best of our knowledge, R3 is the first
Text-to-SQL system to use the execution result
for SQL refinements, and the first Text-to-SQL
system to equip agents with memory sequences
to enhance SQL generation.

2. R3 offers a consensus-based multi-agent sys-
tem for Text-to-SQL tasks. Using very succinct
prompts, R3 sets the new SOTA performance
of 89.9 on the Spider dataset. In the mean-
time, R3 achieves 61.80 on the Bird-Dev dataset.
In addition, R3 effectively helps open-source
LLMs such as Llama-3-8B on SQL generation.
When using Llama-3-8B as the backbone model,
R3outperforms direct CoT prompting Llama-3-
8B by 20%, and outperforms GPT-3.5 on the
Spider-Dev set.

3. We provide a detailed error analysis of R3 on
the existing Text-to-SQL benchmarks, shedding
light on future research on the Text-to-SQL task.

2 Related Works

Traditional Methods for Text-to-SQL. The
Text-to-SQL conversion task has enjoyed a long
history dating back to 1970s (Androutsopoulos
et al., 1995), and researchers have kept working
on this problem for the past few decades (Dahl
et al., 1994; Zelle and Mooney, 1996; Popescu
et al., 2003; Zhong et al., 2017; Yu et al., 2018).
Before the advent of LLMs, systems like RATSQL
(Wang et al., 2019) and LGESQL (Cao et al., 2021)
adapt BERT (Devlin et al., 2018) architecture to
acquire better representations, and carefully design
their techniques to link schema in the database
system. Later, approaches like PICARD (Scholak
et al., 2021), RASAT (Qi et al., 2022), and RESD-
SQL (Li et al., 2023a) adapt the T5 model (Raffel
et al., 2020) to translate user questions into SQL
query in an end-to-end fashion. Additionally, re-
searchers propose a variety of task-specific strate-
gies like relation-aware self-attention (Qi et al.,
2022), schema selection (Li et al., 2023a), and con-
strained decoding (Scholak et al., 2021) to improve
the performance of the Text-to-SQL systems.

LLMs for Text-to-SQL. Recent years have
witnessed LLMs’ breakthroughs in many fields
(Ouyang et al., 2022; Touvron et al., 2023; Dubey
et al., 2024). Moreover, Brown et al. (2020); Chen
et al. (2022); Liu and Liu (2021) have observed
that these LLMs can learn in context with a few ex-
amples during their inference time. The strong rea-
soning and in-context learning capabilities of these
LLMs have brought a paradigm shift to the Text-
to-SQL community, which now focuses on lever-
aging LLMs’ ability to handle Text-to-SQL tasks.
For instance, Pourreza and Rafiei (2023) propose
DIN-SQL to few-shot prompt GPT-4; Dong et al.
(2023) introduce C3, which zero-shots GPT-3.5
with hints and checks output consistency; DAIL-
SQL (Gao et al., 2023) comprehensively evaluates
the efficiency and effectiveness of various prompt-
ing techniques.

Output Consistency. Recent works have applied
the consistency principle (Wang et al., 2022) to
enhance the reasoning ability of LLMs through in-
context learning, such as chain-of-thought (CoT)
(Wei et al., 2022) or tree-of-thoughts (ToT) (Yao
et al., 2023). In addition, Chen et al. (2023) adopt
program-of-thoughts (PoT), which uses Python
code to assist LLMs in the reasoning process and
surpasses CoT on math reasoning.

3 R3 Architecture

SQL-Writer We task SQL-Writer (SW) agents
to: (1) compose the original SQL query based on
the user question and database schema; (2) ensure
that the SQL query is executable, and correct it
when errors occur; (3) respond to reviewer agents’
feedback and revise the SQL query accordingly.
Specifically, we prompt SW agent through Prompt 1
in Appendix A.6. For task (1), we feed the Prompt
1 to SW agent directly. Given a user question x and
the database schema S , task (1) can be formalized
as:

y = SW(x,S),

where y is the generated SQL query. For steps
(2) and (3), we maintain a truncated dialogue
history, denoted as H, which is initially set to
H = [(x,S), y]. Specifically, if an error e occurs
during SQL execution, DB(y), we append e to the
history, updating H ← H + e. Subsequently, we
obtain the updated output, y′, via the following
process:

y′ = SW(H).
35

GivenGivenGiven x, S
y = SW(x,S)
i = 0
while i ≤ 5 do

o = DB(y); {rk}nk=1 = RE(x, y, o,S)
ŷ = SW(x, {rk}nk=1,S)
if y = ŷ then

break
else

y ← ŷ
end
i← i+ 1

end
Algorithm 1: R3-Loop

We then concatenate y′ to the history, resulting in
the updateH ← H+ y′. Furthermore, in consider-
ation of the context window limitations of LLMs,
we truncate the dialogue historyH when the length
of the prompt exceeds the model’s context limit.

Reviewers. We generate the reviewer agent’s
(REs) professions using an LLM (see Prompt 3 in
Appendix A.6) based on the database schema and
the content of the SQL query, for instance, “Senior
Database Engineer specialized in writing various
clauses” and “Data Analyst in the automotive indus-
try”, etc. We incorporate these professions in the
system prompt for the REs to make them focus on
different aspects of the SQL query. These REs are
prompted to provide their professional comments
based on the database schema, the user’s question,
the predicted SQL, and its execution result in the
table format.

Overall Architecture. After several rounds of
“negotiation” between the SQL-writer and REs, we
decide whether there is a consensus by checking
if the SQL-writer agent generates the same SQL
query as in the previous round. When there is a
consensus, we terminate the negotiation loop and
output the final SQL query. Algorithm 1 depicts
the overall process of our system.

Appendix A.6 provides the detailed prompts we
use in R3. In addition, we incorporate:

1. Program of Thoughts (PoT) (Chen et al., 2023)
to prompt the SQL-writer agent to generate
Python code before SQL query (see Prompt 2
in Appendix A.6). Therefore, the agents may
leverage Python in their reasoning process for
better SQL query generation.

2. k-shots example selection based on similarity
of the user question embeddings. Specifically,
when our system infers the SQL query in the test

set, we select the k most similar use questions
and their corresponding SQL queries from the
training set (k-shots) and use them for in-context
learning.

4 Experimental Setup

Spider-Dev Spider-Test Bird-Dev
(Yu et al., 2018) (Li et al., 2023b)

#QA 1,034 2147 1,534
#Domain 138 - 37
#DB 200 206 95
DB Size 879.5 MB 906.5 MB 1.76 GB

Table 1: Statistics of two Text-to-SQL benchmarks we
use in our experiments. “#QA”, “#Domain” and “#DB”
refer to the number of samples, domains and databases,
respectively.

Datasets. We conduct experiments on two cross-
domain Text-to-SQL benchmarks, Spider and Bird,
detailed in Table 1.

Baselines. We conduct our experiments based on
LLMs including GPT-3.5-Turbo, GPT-4 (OpenAI,
2023) and Llama-3 (AI@Meta, 2024). As for the
compared methods, the raw performance for GPT-
3.5 (“-”) was evaluated by Li et al. (2023b); C3 em-
ploys schema linking filtering (Dong et al., 2023);
DAIL selects few-shot demonstrations based on
their skeleton similarities (Gao et al., 2023), and
“SC” represents Self-Consistency (Wang et al.,
2022); PET uses cross-consistency (Li et al., 2024);
DIN decomposes the Text-to-SQL task into smaller
subtasks (Pourreza and Rafiei, 2023); MAC, as
previously mentioned, is the first to apply a Multi-
Agent system to Text-to-SQL tasks (Wang et al.,
2023).

Metrics. We employ test-suite execution evalua-
tion1 (Zhong et al., 2020), the standard evaluation
protocol for Spider, and the official SQL execution
accuracy evaluation for Bird2.

5 Results and Analysis

5.1 General Results

Table 2 compares R3’s performance with existing
baseline methods when we use GPT-3.5-Turbo
or GPT-4 as our backbone models. Our best
performed system with GPT-4 as the backbone

1github.com/taoyds/test-suite-sql-eval
2bird-bench.github.io/

36

Backbone Method
Spider Bird

Dev Test Dev

GPT-3.5
Turbo

- 72.1 - 37.22
C3 (2023) 81.8 82.3 -
MAC (2023) 80.6 75.5 50.56
R3 (ours) 81.4 81.1 52.15

GPT-4

DAIL (2023) 83.6 86.6 -
PET (2024) 82.2 87.6 -
DIN (2023) 82.8 85.3 50.72
MAC (2023) 86.8 82.8 59.39
R3 (ours) 88.1 89.9 61.80

Table 2: Execution accuracy across existing Text-to-
SQL systems. We use the GPT-3.5-Turbo in our exper-
iment. The results for plain GPT-3.5-Turbo (first row)
are taken from Li et al. (2023b).

Backbone Method
Spider

Dev Test

GPT-3.5
Turbo

Li et al. (2023b) 72.1 –
R3 81.4 81.1

Llama-3-8B
Instruct

CoT 52.1 53.5
R3 72.8 72.6

Table 3: Execution accuracy comparison when we em-
ploy open-source LLMs as the backbone models with
R3on Spider-Dev and Spider-Test. We highlight that
R3 significantly boosts the open-source LLM’s capabil-
ity on SQL generation.

achieves 88.1%, 89.9%, and 61.8% on the Spider-
Dev, Spider-Test, and Bird-Dev respectively, sur-
passing the existing multi-agent Text-to-SQL sys-
tems.

5.2 Discussions
Generalizability of R3 framework. We test our
system with open-source Llama-3 models on Spi-
der and report the results in Table 3. To our surprise,
with the help of R3, zero-shot Llama-3-8B outper-
forms GPT-3.5 performance reported by Li et al.
(2023b) on Spider-Dev set. This demonstrates the
effectiveness of our proposed R3 system.

CoT versus PoT. We conduct an ablation study
on the impact of CoT, PoT with one or three re-
viewer agents in the discussion and report the re-
sults in Table 4. The results in Table 4 show that
the n-Reviewer(s) Loop (nR-Lp) plays a major role
in performance improvement, with the 3R-Lp con-
figuration significantly outperforming the 1R-Lp
setup. The proposed R3 system achieves a 10.54%
improvement over the baseline GPT-4 + CoT. We

GPT-3.5-Turbo GPT-4

Spider Bird Spider Bird

CoT 78.2 37.22 79.7 53.30

PoT 78.5 36.96 80.0 54.61

1R-Lp + CoT 78.3 44.13 82.3 57.89

1R-Lp + PoT 79.3 46.35 85.4 58.34

R3: 3R-Lp + PoT 81.4 52.15 88.1 61.80

Table 4: Ablation Studies on Spider-Dev and Bird-Dev
(Execution Accuracy). The 1-Reviewer Loop (1R-Lp)
represents that only one reviewer agent participates in
the discussion, while the 3-Reviewers Loop (3R-Lp) rep-
resents three in the discussion, which is also the default
configuration of R3. We conduct all the experiments
here under the 5-shot setting.

provide the statistical significant test for these re-
sults in Appendix A.1. Appendix A.2 provides a
sensitivity analysis of the impacts of the k value in
k-shots.

5.3 Error Analysis

In total, GPT-4+R3 fails to generate the gold SQL
queries for 123 instances in Spider-Dev. Table 5
shows the error case distribution for our system
on Spider-Dev (more in Appendices A.3 and A.4).
Note that though we have spotted issues with the
gold SQL queries, we still adopt the original set to
calculate the performance of our system to ensure
a fair comparison.

Gold Error. We notice that though the annota-
tion quality of Spider is good, there are still cases
where the gold SQL queries are not correct. Specif-
ically, among the 151 examples, 30.5% are due to
incorrect gold SQL queries (4.5% of all the exam-
ples in Spider-Dev). To facilitate future research,
we catalog the instances with incorrect gold SQL,
correct the errors, and share the details.

Ambiguity. We observe that there are a few ques-
tions involving ambiguities, a phenomenon spot-
ted on a wide range of NLP tasks (Plank, 2022;
Deng et al., 2023). In Table 5.3, both FullName
and Maker columns hold the information for the
“name of makers”, except that FullName holds
the full names while Maker holds the name abbre-
viations. Therefore, both the gold and predicted
SQL queries should be considered correct if there is
no further clarifications. Such ambiguous requests
may be common in real-world applications as the

37

Error Types Question, Gold & Prediction Explanation

Gold Error
(30.5%)

Q: What are the Asian countries which have a population larger than that of any country in Africa?
Gold: ❌ … AND population > (SELECT min(population) FROM country WHERE
Continent = "Africa")
Pred: ✅ … AND population > (SELECT max(population)
FROM country WHERE Continent = "Africa")

Judged as incorrect because of the
incorrect gold SQL query.

Logic
(29.8%)

Q: How many owners temporarily do not have any dogs?
Gold: ✅ SELECT count(*) FROM Owners WHERE owner_id NOT IN (SELECT
owner_id FROM Dogs)
Pred: ❌ SELECT (SELECT COUNT(DISTINCT owner_id) FROM Owners) - (SELECT
COUNT(DISTINCT owner_id) FROM Dogs WHERE date_departed IS NULL)

The predicted SQL query wrongly
assumes that all owners have had
dogs.

Ambiguity
(13.2%)

Q: What are the names of all makers with more than 3 models?
Gold: ✅ SELECT T1.FullName ... HAVING count(*) > 3;
Pred: ✅ SELECT T1.Maker ... HAVING count(*) > 3;

Both FullName and Maker
columns hold the information for
“names”.

Inaccuracy
(11.3%)

Q: What are the arriving date of the dogs who have gone through a treatment?
Gold: ✅ SELECT T1. date_arrived, FROM ...
Pred: ❌ SELECT T1. date_arrived, T1.Name FROM ...

The selected Name is not asked by
the question.

DB Value
(10.6%)

Q: Which city and country is the Alton airport at?
Gold: ✅ SELECT ... WHERE AirportName = "Alton" ;
Pred: ❌ SELECT ... WHERE AirportName LIKE "%Alton%" ;

Our framework notices there is a
space for Alton in the DB,
therefore employing a fuzzy match.

Others (4.6%)

Table 5: Error Analysis of R3 on Spider-Dev. We make the part in the question red when it is either annotated
incorrectly in the gold SQL query (Gold) or predicted incorrectly in the predicted SQL query (Pred).

lay users may not be familiar with the database
schema. This requires future research on interac-
tive Text-to-SQL systems that can understand and
deal with such ambiguities in user questions.

Dirty Database Value. We observe that due to
the Database (DB) setup for Spider, certain DB val-
ues may deviate from what is asked in the question.
For instance, in Table 5.5, R3 notices a space for
Alton in DB, therefore employing a fuzzy match.
But this deviates the SQL query’s execution results
from the gold SQL query’s results.

Logic. In Table 5.2, we present an example of
the logic error made by R3. We notice that LLMs
may solve the problems using a more complicated
logic, which is prone to mistakes. For instance, in
Table 5.2, instead of directly counting the owners
who do not own dogs, the LLMs try to subtract
the number of dog owners from the total number
of owners. This ignores the possibility that some
owners may have never had any dogs before. This
addresses an issue with the multi-agent system that
if the system comes up with a complicated initial
SQL query, the following discussion process may
try to polish the complicated SQL query instead
of switching to an easier solution. In cases like
Table 5.2, there is no way to reach a perfect SQL
query with the subtraction logic.

Inaccuracy. We observe that the LLMs may in-
corporate more information than what is asked by
the end user. For instance, in Table 5.4, the user
does not ask for the name of the dogs, but the LLMs
present such information along with the requested
arrival date. We hypothesize that since such extra
information can potentially be helpful to the end
user, LLMs may be biased towards including it.

Our findings indicate that the existing evalua-
tion protocols for Text-to-SQL generation may not
authentically capture the capabilities of these so-
phisticated systems. Therefore, we advocate for
a reassessment and enhancement of Text-to-SQL
evaluation methods. We provide further error anal-
ysis of R3 on Bird in Appendix A.4.

6 Conclusion

In this paper, we propose R3, a consensus-based
multi-agent system for Text-to-SQL generation.
R3 sets the new SOTA performance on Spider
(89.9) and achieves 61.80 on the Bird Dev set. In
addition, we find that R3 significantly enhances
open-source LLMs such as Llama-3-8B (over 20%
improvement on Spider Dev set). Last but not least,
we conduct a comprehensive error analysis and
identify issues with the current Text-to-SQL evalu-
ation, underscoring the necessity for a more refined
evaluation protocol, as the LLMs and LLM-based
methods become more powerful than ever.

38

Limitations

Due to the scope of the study, we only test a lim-
ited number of LLMs. In this paper, we study the
performance gap between 1R-Lp and 3R-Lp. We
leave further studies on the effects of the number
of reviewers to future research.

Ethical Statements

In this paper, we propose strategies to improve the
SQL generation capabilities of LLMs. To the best
of our knowledge, we do not expect our system
would have negative impacts on society.

References
AI@Meta. 2024. Llama 3 model card.

Ion Androutsopoulos, Graeme D Ritchie, and Peter
Thanisch. 1995. Natural language interfaces to
databases–an introduction. Natural language engi-
neering, 1(1):29–81.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682–17690.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. Lgesql: line graph en-
hanced text-to-sql model with mixed local and non-
local relations. arXiv preprint arXiv:2106.01093.

Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor
Mihaylov, Srini Iyer, Veselin Stoyanov, and Zor-
nitsa Kozareva. 2022. Improving in-context few-shot
learning via self-supervised training. arXiv preprint
arXiv:2205.01703.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re-
cent advances in text-to-SQL: A survey of what we
have and what we expect. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 2166–2187, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Naihao Deng, Xinliang Zhang, Siyang Liu, Winston Wu,
Lu Wang, and Rada Mihalcea. 2023. You are what
you annotate: Towards better models through anno-
tator representations. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
12475–12498, Singapore. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. arXiv preprint arXiv:2406.08426.

George Katsogiannis-Meimarakis and Georgia Koutrika.
2023. A survey on deep learning approaches for text-
to-sql. The VLDB Journal, 32(4):905–936.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067–13075.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, et al. 2023b. Can llm already
serve as a database interface. A big bench for
large-scale database grounded text-to-sqls. CoRR
abs/2305.03111.

39

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye,
Ziyue Li, Rui Zhao, et al. 2024. Pet-sql: A prompt-
enhanced two-stage text-to-sql framework with cross-
consistency. arXiv preprint arXiv:2403.09732.

Yixin Liu and Pengfei Liu. 2021. Simcls: A simple
framework for contrastive learning of abstractive
summarization. arXiv preprint arXiv:2106.01890.

Henry B Mann and Donald R Whitney. 1947. On a test
of whether one of two random variables is stochasti-
cally larger than the other. The annals of mathemati-
cal statistics, pages 50–60.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, pages 1–22.

Barbara Plank. 2022. The “problem” of human label
variation: On ground truth in data, modeling and
evaluation. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10671–10682, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149–157.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating
relational structures into pretrained seq2seq model
for text-to-sql. arXiv preprint arXiv:2205.06983.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. arXiv preprint arXiv:1911.04942.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Zelai Xu, Chao Yu, Fei Fang, Yu Wang, and Yi Wu.
2023. Language agents with reinforcement learn-
ing for strategic play in the werewolf game. arXiv
preprint arXiv:2310.18940.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, pages 1050–1055.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-sql with distilled test suites.
arXiv preprint arXiv:2010.02840.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

40

https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543

A Appendix

A.1 Significance Test
We divided the generated SQL by several strategies
in Table 4 into 10 equal parts and calculated the
execution accuracy for each. To test whether our
strategy can indeed improve execution accuracy,
we conduct a significance test between the “CoT”
and “3R-Lp+PoT” strategies. The null hypothesis
of the test is that the median execution accuracy
obtained by the two strategies is the same. The
Mann-Whitney U Test (Mann and Whitney, 1947)
is a non-parametric statistical method used to com-
pare whether there is a significant difference in the
medians of two independent samples. Compared
to the Analysis of Variance (ANOVA), it does not
require the data to be normally distributed, making
it suitable for small samples or data with unknown
distribution.

The p-value of the test is 0.0024, which is below
the commonly accepted significance level of 0.05.
Therefore, we have reason to reject the null hy-
pothesis, indicating that the “3R-Lp+PoT” strategy
leads to a significant performance improvement.

Effects of the number of “reviewer” agents.

A.2 Effects of k in k-shot.

0 2 4 6 8 10
k-shot

71

72

73

74

75

Ex
ec

ut
io

n
Ac

cu
ra

cy
 (%

)

GPT-3.5 + 1R-Lp + PoT
GPT-3.5

0 2 4 6 8 10
k-shot

72

74

76

78

80

82

84

86

Ex
ec

ut
io

n
Ac

cu
ra

cy
 (%

)

GPT-4 + 1R-Lp + PoT
GPT-4

Figure 2: k-shot Sensitivity Analysis.

We test various k values on 200 random samples

from Spider-Dev. As shown in Figure 2, compared
to CoT, the performance of the R3 system remains
relatively stable regardless of the number of ex-
amples, which corroborates our previous findings
from the 0-shot experiments with Llama-3.

41

A.3 Spider Error Cases

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: Find the last name of the students who currently live in the
state of North Carolina but have not registered in any degree
program.
Gold:Gold:Gold: SELECT ... WHERE
T2.state_province_county
= ’NorthCarolina’ EXCEPT ...

Pred:Pred:Pred: SELECT ... WHERE
T2.state_province_county
= ’North Carolina’ EXCEPT ...

The filtering condition in the
question does not match the
database value, string
“NorthCalifornia” in database
do not have a space in between.

Gold Error Q:Q:Q: What are the first names of all players, and their average
rankings?
Gold:Gold:Gold: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.first_name

Pred:Pred:Pred: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.player_id

The individuals in the table can
be uniquely determined by
column player_id not
first_name, when GROUP BY.

Gold Error Q:Q:Q: Find the id and cell phone of the professionals who operate
two or more types of treatments.
Gold:Gold:Gold: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id
HAVING count(*) >= 2

Pred:Pred:Pred: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id HAVING
COUNT(DISTINCT T2.treatment_type_code) >=
2

The gold only finds
professionals who have two or
more records in the treatment
table does not ensure that the
records are for different types
of treatments

Ambiguity Q:Q:Q: What are the names and ids of all makers with more than 3
models?
Gold:Gold:Gold: SELECT T1.FullName , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;
Pred:Pred:Pred: SELECT T1.Maker , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;

Both column “Maker” and
column “FullName” can answer
the question about the “names
of makers” in the query.

Imprecise Q:Q:Q: What are the arriving date and the departing date of the dogs
who have gone through a treatment?
Gold:Gold:Gold: SELECT DISTINCT T1.date_arrived,
T1.date_departed FROM Dogs AS T1 JOIN
Treatments AS T2 ON T1.dog_id = T2.dog_id
Pred:Pred:Pred: SELECT DISTINCT T1.date_arrived,
T1.date_departed, T1.Name FROM Dogs AS T1
JOIN Treatments AS T2 ON T1.dog_id =
T2.dog_id

The question do not require
listing the specific names of the
students, but only ask to list the
students’ arrival and departure
dates. This falls under
information redundancy.

Table 6: Spider error cases.

42

A.4 BIRD Error Cases

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: How many cards with unknown power that can’t be found in
foil is in duel deck A?
Gold:Gold:Gold: SELECT SUM(CASE WHEN power
LIKE ’%*%’ OR power IS NULL THEN 1 ELSE 0
END) FROM cards WHERE hasFoil = 0 AND
duelDeck = ’a’
Pred:Pred:Pred: SELECT COUNT(*) FROM cards WHERE
(power IS NULL OR power = ’*’) AND
hasFoil = 0 AND duelDeck = ’a’

Values in database cannot exact
match with the question and
evidence.

Gold Error Q:Q:Q: How many artists have designed a card with a black border
color and is available in both "arena" and "mtgo" printing type?
Gold:Gold:Gold: SELECT COUNT(CASE WHEN availability
LIKE ’%arena,mtgo%’ THEN 1 ELSE NULL END)
FROM cards
Pred:Pred:Pred: SELECT COUNT(DISTINCT artist) FROM
cards WHERE borderColor = ’black’ AND
availability LIKE ’%arena,mtgo%’

The gold missed one filtering
condition.

Ambiguity Q:Q:Q: Among black card borders, which card has full artwork?
Gold:Gold:Gold: SELECT id FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1
Pred:Pred:Pred: SELECT name FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1;

Both column “name” and
column “id” can answer the
question about the “the card has
full artwork” in the query.

Logic Q:Q:Q: Which cities have the top 5 lowest enrollment number for
students in grades 1 through 12?
Gold:Gold:Gold: SELECT T2.City FROM frpm AS T1 INNER
JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode GROUP BY T2.City ORDER BY
SUM(T1.‘Enrollment (K-12)‘) ASC LIMIT 5
Pred:Pred:Pred: SELECT T2.City, T1."Enrollment (K-12)"
FROM frpm AS T1 JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode ORDER BY
T1."Enrollment (K-12)" ASC LIMIT 5;

The Pred query is incorrect
because it lacks grouping and
aggregation. It directly selects
cities and their corresponding
"Enrollment (K-12)" without
summing up the enrollment
numbers across all schools
within each city. As a result, it
returns the cities of the five
schools with the lowest
enrollment numbers, which
does not accurately answer the
question seeking the top 5 cities
with the lowest total enrollment
for students in grades 1 through
12.

Table 7: Bird error cases.

43

A.5 Interactive Correction Cases

Before After Reason

Q:Q:Q: What is the phone number of the school that has the highest number of test takers with an SAT score of over 1500?

Before:Before:Before:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
WHERE satscores.NumGE1500
> 1500
GROUP BY schools.School
ORDER BY COUNT(*) DESC
LIMIT 1;

After:After:After:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
ORDER BY
satscores.NumGE1500 DESC
LIMIT 1;

The WHERE clause is checking if the
number of test takers with an SAT score
over 1500 is greater than 1500, which is
not what the question is asking. The
question is asking for the school with
the highest number of test takers who
scored over 1500. Additionally, the
GROUP BY clause is grouping by the
school name, which may not be unique.
It would be better to group by the
school code (CDSCode) which is
unique for each school.

Q:Q:Q: List the top five schools, by descending order, from the highest to the lowest, the most number of Enrollment (Ages
5-17). Please give their NCES school identification number.

Before:Before:Before:
SELECT T1."School Name",
T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

After:After:After:
SELECT T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

The question asks for the top five
schools with the most number of
Enrollment (Ages 5-17), and their
NCES school identification number.
However, the SQL query provided
returns the school name, which is not
required by the question.

Q:Q:Q: find the package option of the tv channel that do not have any cartoon directed by Ben Jones.

Before:Before:Before:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
LEFT JOIN Cartoon ON
TV_Channel.id =
Cartoon.Channel
WHERE Cartoon.Directed_by
IS NOT ’Ben Jones’;

After:After:After:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
WHERE TV_Channel.id NOT IN
(
SELECT Cartoon.Channel
FROM Cartoon
WHERE Cartoon.Directed_by
= ’Ben Jones’);

The current query is selecting all
channels where the director is not Ben
Jones, but it should exclude channels
that have any cartoons directed by Ben
Jones. This can be achieved by using a
subquery to find all channels that have
cartoons directed by Ben Jones, and
then excluding these channels in the
main query. Here is the corrected SQL:

Q:Q:Q: List the earnings of poker players in descending order.

Before:Before:Before:
SELECT * FROM poker_player
ORDER BY Earnings DESC;

After:After:After:
SELECT Earnings FROM
poker_player ORDER BY
Earnings DESC;

The question only asks for the earnings
of poker players. Therefore, we should
only select the ‘Earnings‘ column to
make the result more concise and
relevant to the question.

Q:Q:Q: How many countries speak both English and Dutch?

Before:Before:Before:
SELECT COUNT(DISTINCT
CountryCode)
FROM countrylanguage
WHERE Language = ’English’
AND CountryCode IN (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

After:After:After:
SELECT COUNT(*)
FROM (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’English’
INTERSECT
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

The SQL query provided uses the ‘IN‘
clause, which selects countries that
speak either English or Dutch. However,
the question asks for countries speaking
both languages. Using IN results in a
union of sets (either English or Dutch),
not an intersection (both English and
Dutch). This could be done with two
separate queries joined by an
‘INTERSECT‘ clause.

Table 8: Interactive correction cases.

44

A.6 Prompt Examples

Describe how you understand the question based on the evidence , and
help me write an SQL to answer the question.

EVIDENCE : { e v i d e n c e }
USER_QUESTION : { q u e s t i o n }

RELATED SQL :
{related_sql}

DATABASE STRUCTURE :
{schema}

Prompt 1: CoT-SQL-Writer

Write an to answer the question.

Program of Thoughts (PoT) is a variant of Chain of Thought (CoT),
pre −generating Python code to assist in the creation of SQL. Please
apply PoT (and PoT only) before generating an SQL.

In your python code , `Table %s` is stored in `db_dict['%s']`, `
db_dict ` is of type dict[pandas.DataFrame].

RELATED SQL :
{related_sqls}

DATABASE STRUCTURE :
{schema}

EXAMPLES :
QUESTION: What is %s in the earliest year and what year was it?
SQL:
earliest_year = db_dict [%s]['Year'].min()
year_filtered_data = step1_result[step1_result['Year'] ==
earliest_year]
result = year_filtered_data [[%s, 'Year']]
```sql
SELECT T1.%s, T2.Year FROM %s AS T1 JOIN %s AS T2 ON T1.Id = T2.Id
WHERE T2.Year = (SELECT min(YEAR) FROM %s);
```

QUESTION: Show names for all %s except for %s having a %s in year
2023.
SQL:
%s_2023 = db_dict['%s'][db_dict['%s']['year'] == '2023']
result = db_dict [%s][~ db_dict [%s][%s].isin(% ss_2023 [%s])]
```sql
SELECT name FROM %s EXCEPT SELECT T2.name FROM %s AS T1 WHERE T1.
year = 2023
```

QUESTION: Find the %s that %s is A and B?
SQL:

45

condition_a_data = db_dict [%s][db_dict['Cartoon '][%s] == 'A']
condition_b_data = db_dict [%s][db_dict['Cartoon '][%s] == 'B']
result = pd.merge(condition_a_data , condition_b_data , how='inner')
```sql
SELECT T1.%s FROM %s AS T1 WHERE %s = 'A'
INTERSECT
SELECT T1.%s FROM %s AS T1 WHERE %s = 'B'
```

EVIDENCE : { e v i d e n c e }
USER_QUESTION : { q u e s t i o n }
SQL :

Prompt 2: PoT-SQL-Writer

You are the manager of a Database project. You are going to invite
{n} experts to review an SQL query.
Who would you invite?

considering:
(1) the domain of this database;
(2) the structure of this SQL.
Please write your invitation as a JSON format dictionary , Enclose
the JSON within ```json...```.

DATABASE STRUCTURE :
{schema}

QUESTION : { q u e s t i o n }
SQL :
{pred_sql}

EXAMPLES :
```json
{

"Reviewer PVsg": "Data Analyst in automotive industry",
"Reviewer 2KtR": "Senior Database Engineer specialized in writing
various clauses",

"Reviewer LmN3": "Senior Database Engineer specialized in writing
filtering conditions"

}
```
INVITATION :

Prompt 3: Invitation

46

