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Abstract

Large Language Models (LLMs) excel in nat-
ural language tasks, but less is known about
their reasoning capabilities over tabular data.
Prior analyses devise evaluation strategies that
poorly reflect an LLM’s realistic performance
on tabular queries. Moreover, we have a lim-
ited understanding of the robustness of LLMs
towards realistic variations in tabular inputs.
Therefore, we ask: Can general-purpose LLMs
reason over tabular data, really?, and focus
on two questions 1) are tabular reasoning ca-
pabilities of general-purpose LLMs robust to
real-world characteristics of tabular inputs, and
2) how can we realistically evaluate an LLM’s
performance on analytical tabular queries?
Building on a recent tabular reasoning bench-
mark, we first surface shortcomings of its
multiple-choice prompt evaluation strategy, as
well as commonly used free-form text met-
rics such as SacreBleu and BERT-score. We
show that an LLM-as-a-judge procedure yields
more reliable performance insights and unveil
a significant deficit in tabular reasoning perfor-
mance of LLMs. We then extend the tabular
inputs reflecting three common characteristics
in practice: 1) missing values, 2) duplicate en-
tities, and 3) structural variations. Experiments
show that the tabular reasoning capabilities of
general-purpose LLMs suffer from these vari-
ations, stressing the importance of improving
their robustness for realistic tabular inputs.1

1 Introduction

Large Language Models (LLMs) are intended for
general-purpose usage and particularly excel on
natural language tasks represented in text (Liang
et al., 2023). In organizations, another common
modality for data analysis and decision-making, is
tabular data, for which recent studies have shown
promising performance of LLMs as well (Fang
et al., 2024). Structural analysis to understand to

1Code: github.com/trl-lab/tabular-robustness

what extend the reasoning capabilities of LLMs
pertain, realistically, in more complex tabular rea-
soning tasks, such as analytical aggregations, is still
lacking. Without reliable knowledge of their failure
modes on tabular inputs and tasks, though, we risk
unwarranted usage of these models in practice and
delayed development of more robust capabilities.

Surfacing the reasoning capabilities on tabu-
lar tasks is, however, not straightforward. Most
studies adopt free-form text metrics, which hardly
capture reliable reasoning accuracy due to differ-
ent formatting of the ground-truth answers, par-
ticularly of analytical questions, versus long-form
LLM-generated responses (Ji et al., 2024; Xu et al.,
2023). The alternative of forcing certain output for-
mats (Sui et al., 2024) yields a limited understand-
ing of the open-form reasoning performance and is
prone to parsing errors, while another alternative
of including the ground-truth answer in a multiple-
choice prompt (Qiu et al., 2024) leaks ground-truth
answers into the prompt compromising its relia-
bility. Beyond realistic evaluation procedures, in
order to use LLMs in a reliable manner for tabular
reasoning tasks, it is important to understand how
well they can handle the characteristics of tabular
data inputs (Cong et al., 2023; Singha et al., 2023)
as encountered in practice.

To close these gaps, we first address the ques-
tion: how can we realistically evaluate an LLM’s
performance on analytical tabular queries? We
examine the limitations of existing evaluation met-
rics, such as SacreBleu (Post, 2018) and BERT-
score (Zhang* et al., 2020), as the distributions
are these among correct and incorrect answers are
inseparable. Instead, we propose using the LLM-
as-a-judge evaluation method (Zheng et al., 2023)
for more reliable performance insights and show,
through calibration with human annotations, that
the LLM-as-a-judge provides a reliable signal of
tabular reasoning performance. Using this eval-
uation procedure, we unveil a significant gap in
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tabular reasoning accuracy than previously found
in the existing TQA-Bench benchmark for tabular
reasoning (Qiu et al., 2024).

Second, through comprehensive analysis we an-
swer the question: are LLMs robust to real-world
characteristics of multi-table inputs? Building on
the TQA-Bench, we first improve the validity of
the task queries and downscale multi-table inputs
to gain more fine-grained insights. We then in-
spect the robustness of LLMs against characteris-
tics of tabular inputs as commonly found in prac-
tice. Specifically, we formalize the following three
characteristics: missing values, duplicate entities,
and structural variations. We show that most LLMs
are not as robust to, and insufficiently acknowledge
the presence of, such quality issues or anticipated
variations in multi-table inputs, highlighting the
need for more robust models for tabular reasoning.
We make the following concrete contributions:

• We concretize the limitations of free-form text
metrics and show the reliability of using an
LLM-as-a-judge for evaluating open-ended re-
sponses for tabular reasoning tasks.

• We extend the TQA-Bench benchmark with tab-
ular inputs reflecting typical real-world charac-
teristics of tabular data: missing values, dupli-
cate entities, and structural variations.

• We surface the shortcomings of LLMs to ac-
count for realistic variations in tabular data of
varying sizes, providing more fine-grained in-
sights into their scalability and robustness.

2 Related Work

Analysis of Tabular Reasoning Capabilities
The TQA-Bench (Qiu et al., 2024) examines multi-
table reasoning capabilities with LLMs over vari-
ous query complexities. We complement the TQA-
Bench by using it as a base for our evaluation, and
integrating common properties in tabular data, such
as missing values, to study the robustness of multi-
table reasoning capabilities of LLMs. Similarly,
Sui et al. (2024) considers structural understanding
capabilities by evaluating the accuracy of LLMs
in basic tasks such as row/column retrieval. The
QATCH benchmark (Papicchio et al., 2023) eval-
uates tabular representation learning models spe-
cialized for SQL-centric tasks and mainly focuses
on SQL-based evaluations. While the QATCH
benchmark considers enterprise-centric evaluation
tasks and inputs, it does not surface robustness for
real-world properties. Earlier work by Cong et al.

(2023) formalizes and analyzes key properties of
tabular data principled in the relational data model,
such as column-order insignificance. In this work,
we focus on assessing the robustness on similar
properties in the reasoning capabilities through the
LLMs’ generated responses. In this realm, Singha
et al. (2023), evaluate various LLMs on their tabu-
lar understanding capabilities under noisy tabular
inputs and variations in formatting of tabular data
in prompts. While their robustness assessments
cover realistic characteristics such as permutations
in column-order, we include more properties and as-
sess more complex reasoning capabilities of LLMs.

Evaluation Metrics for Tabular Reasoning The
TARGET benchmark (Ji et al., 2024) focuses on
evaluating table retrieval methods in open-domain
querying over structured data. They surface issues
in the reliability of free-form text evaluation met-
rics such as SacreBleu and BERT-score, as ground-
truth answers in tabular reasoning datasets are
small text snippets or exact values while LLMs gen-
erate longer outputs which challenges such metrics.
Other work (Sui et al., 2024) intends to remedy the
evaluation problem by forcing an LLM to output
a singular answer in a structured format. While
relying on an LLMs’ structured output generation
and response parsing are prone to error, ground-
truth answers are often sentences, albeit short, and
not single values (Chen et al., 2020). An alterna-
tive procedure, adopted in the TQA-Bench (Qiu
et al., 2024), is to include the ground-truth answer
in multiple-choice options and let the LLM select
an option. The validity hence reliability of this
evaluation approach is questionable as it leaks the
ground-truth answer in the input prompt.

3 The TQA-Bench and Revisions

Here, we explain the tabular reasoning tasks in-
cluded in the TQA-Bench that we use to assess
the reliability of evaluation metrics as well as the
robustness of the tabular reasoning capabilities of
LLMs. We explain revisions we made to invalid
queries, and tabular inputs to gain granular insights.

3.1 TQA-Bench reasoning tasks

The TQA-Bench (Qiu et al., 2024) provides a
benchmark for tabular reasoning capabilities of
three complexities: 1) lookup queries, 2) aggre-
gation, and 3) complex calculations. Specifically,
the TQA-Benchmark evaluates three different lev-
els of reasoning complexities as follows:
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Lookup queries These queries involve simple
entity extraction based on one or two direct condi-
tions. For example, “What is the description of air
carrier 20398?” (Entity lookup) or “Which Horror
movie gets the highest budget?” (Top selection)
require the model to retrieve a value from a column
given a key or set of values from the same or an-
other table. In multi-table settings, the challenge
lies in resolving foreign key relationships.

Aggregation queries These queries require cal-
culations over filtered table segments. Examples
include “How many airlines land in Flint, MI:
Bishop International?” (Count), “What is the total
flight delay (DEP_DELAY) from ORD?” (Sum),
and “What is the average arrival delay for flights
landing at FNT?” (Average). These tasks test the
model’s ability to perform basic numeric operations
while managing filters and joins.

Complex calculations These queries go beyond
basic aggregation by requiring operations between
multiple fields or statistical analysis. For instance,

“What is the average total delay (ARR_DELAY -
DEP_DELAY) for Envoy Air (MQ)?” (Subtraction)
and “What is the correlation between departure
and arrival delays for flights with delays over -9
minutes?” (Correlation) assess deeper reasoning
by requiring chained arithmetic, statistical compu-
tation, and multi-step reasoning.

3.2 TQA-Bench Revisions
We leverage the tabular data and query generation
methods from TQA-Bench but make two adjust-
ments which we describe here: 1) we improve the
validity of the queries, and 2) we downscale the
tabular data inputs to yield more granular insights.

Query Refinements We updated some of the ex-
isting question templates, as they lead to unnatural
questions such as “Where is the 16S21E21G001S?”.
For cases such as this, we adapted the tem-
plates to be more precise and in line with natural
questions. For instance, the question “Where is
the 16S21E21G001S?” is updated to “In which
county is the the station with the full name/id
16S21E21G001S?“. These updates also ensured
that there is only one logical answer which can be
extracted from the available tables, as the original
question could have also referred to the longitude
and latitude columns of the respective dataset.

Tabular Data Downscaling While TQA-Bench
evaluates multi-table reasoning capabilities with

relatively large and multiple tables resulting in con-
text sizes from 8K to 128K tokens. Our preliminary
experiments revealed significant challenges in rea-
soning capabilities already with smaller table sizes,
motivating the downsizing of context sizes to 1K,
2K, 4K, 6K and 8K to obtain more granular in-
sights. To do so, we employ the scaling method
introduced by TQA-Bench to truncate and segment
tables while preserving their structural and rela-
tional integrity (Qiu et al., 2024).

4 Towards Reliable Evaluation of Tabular
Reasoning Capabilities

Evaluating multi-table reasoning, and generally
free-form question answering, still is an open chal-
lenge (Ji et al., 2024; Xu et al., 2023). While con-
text and reasoning traces of LLM-generated an-
swers are useful, they complicate evaluation when
ground-truth answers are short and exact, as is the
case in typical tabular tasks. Table 1 illustrates this
issue for two example queries from the popular OT-
TQA dataset for table question answering (Chen
et al., 2020) along with their ground-truth answers.
When the LLM-generated answers are evaluated
against the short ground-truth answers by two free-
form text metrics, SacreBleu (Post, 2018) and
BERT-score (Zhang* et al., 2020), their scores are
inconclusive. For example, for the queries in Ta-
ble 1, the SB score for a correct generated answer
is higher for the first query (1.4) but lower than the
correct generated answer for the second query (0.5)
for which the incorrect generated answer is closer
to the correct answer for the first query (1.0). The
BERT-score (BS) reflects mainly textual similarity,
and shows barely any differences for different nu-
meric values included in the response: its value is
0.81 for an incorrect as well as a correct generated
answer. In what follows, we study the reliability of
these different metrics in detail.

LLM-generated answers We adopt a syn-
thetic procedure to maximize the likelihood of
(in)correctness of the LLM-generated answers,
which we refer to as generated answers. In to-
tal, we extract 350 questions from the question
database in the TQA-Bench tabular reasoning
benchmark. We only provide a single row as con-
text to the LLM to generate its answer, while forc-
ing it to only use the table data and not its memory.
For correct generated answers, we provide the row
that contains the ground-truth cell value for the
lookup task as context to generate the response.
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Table 1: Below query examples from the OTTQA benchmark (Chen et al., 2020) illustrate the difficulty of evaluating
long-form LLM-generated answers against ground-truth answers (exact values or short text snippets) with existing
text metrics such as the SacreBleu (SB) and BERT-score (BS) metrics, which fail to distinguish between incorrect
versus correct answers. We find that an LLM-as-a-judge is a more reliable metric for evaluating tabular reasoning
capabilities in these cases.

Question: According to the 2016 census, what is the population of the city that is home to the Territorial
Administration Building designed by Thomas W. Fuller?

Generated answer Answer SB score BS score LLM

The Territorial Administration Building is located
in Dawson City, Yukon. According to the 2016
Canadian census, the population of Dawson City
was 1,375 .

1,375 1.4 0.83 correct

According to the 2016 census, the population of
the city that is home to the Territorial Adminis-
tration Building designed by Thomas W. Fuller is
45,000 .

1,375 0.0 0.81 incorrect

Question: How long has the team that qualified for the 1999 FIFA Confederations Cup in June existed?

Generated answer Answer SB score BS score LLM

The team that qualified for the 1999 FIFA Confed-
erations Cup in June was Germany, who secured
their qualification on 30 June 1996. To determine
how long they had existed as a team by June 1999:
The Germany national football team was officially
founded in 1908 . From 1908 to 1999 is 91 years.

Answer: The Germany national team had existed
for 91 years by June 1999.

since 1908 0.5 0.81 correct

The team that qualified for the 1999 FIFA Confed-
erations Cup in June was Germany. Germany has
existed as a national team since 1974 , so by June
1999, they had existed for 25 years.

since 1908 1.0 0.82 incorrect

For incorrect answers, we also provide the row
that contains the ground-truth cell, but replace the
ground-truth cell value with a random but different
value from the same column, resulting in a factu-
ally incorrect but still realistic generated answer.
Following this procedure, we extract 175 correct
and 175 incorrect generated answers.

To validate the LLM-generated answers, we
check the correctness of the 350 generated ref-
erence answers against the ground-truth answers
(original cell values) through human annotation.
The human evaluation reveals that approximately
93.75% of the generated correct answers are indeed
accurate, while 98.26% of the generated incorrect
answers are indeed incorrect. These results con-
firm the reliability of our procedure for creating the
LLM-generated answer dataset.

Free-form text evaluation metrics Using the
LLM-generated answers and ground-truth answers,
we inspect the reliability of two commonly used
free-form text metrics: SacreBleu (Post, 2018) and
BERT-score (Zhang* et al., 2020). SacreBLEU is
a standardized version of the BLEU score that mea-
sures n-gram overlap between generated and refer-
ence texts, while the BERT-score leverages BERT
embeddings to compute similarity based on token-
level semantic matching. Our analysis reveals that
neither the BERT-score nor SacreBleu metric pro-
vide a reliable signal for evaluating the correctness
of generated answers. To visualize the reliability
of these scores, we used Kernel Density Estimation
(KDE) to estimate their distributions. For BERT-
score, due to tight clustering of values, the KDE can
exceed 1, while the more dispersed SacreBLEU val-
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ues result in lower KDE peaks. The distributions of
scores for correct and incorrect LLM-generated an-
swers, when compared with ground-truth answers,
exhibit significant overlap making them indistin-
guishable (Figures 1a and 1b). The inseparability
between these distributions illustrates the unsuit-
ability of these metrics for evaluating the accuracy
of long-form answers against concise ground-truth
answers.
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(a) BERT Score distribution using Kernel Density Estimation
(KDE) of the incorrect and correct generated answers. Scores
close to 1 indicate stronger semantic similarity between LLM-
generated and ground-truth answers.
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(b) SacreBleu Score distribution using Kernel Density Esti-
mation (KDE). Higher scores indicate better n-gram overlap
between LLM-generated and ground-truth answers.

Figure 1: Distribution of SacreBleu and BERT-scores
obtained by comparing LLM-generated answers, from
which we know their (in)correctness, against ground-
truth answers. To be reliable as a metric, the distribu-
tions should be clearly separable, which is not the case
for both metrics.

LLM-as-a-judge Recently, LLMs have emerged
as a useful evaluation metric for free-form text,
termed as LLM-as-a-judge evaluation (Zheng et al.,
2023). This approach to be particularly well-suited
for tabular reasoning evaluation, where generated
answers are often long- and free-form text com-
pared to, for example OTTQA, where answers are
short text snippets or single (numeric) values. We
propose using an LLM-as-a-judge for evaluating
tabular reasoning through LLMs, as this allows us

to keep the generation close to real-world usage,
where users expect models to generate complete
answers rather than forcing a single-valued answer
(which does not always correspond to the ground-
truth answer) or choose from predefined options
as in TQA-Bench (Qiu et al., 2024). Second, re-
lying on forced answer formats –accommodating
multiple-choice or string-matching– can be brittle,
especially for smaller models that may produce
slightly misformatted outputs or fail to follow con-
straint templates (Liu et al., 2024).

To understand the reliability of the LLM-as-a-
judge for evaluating tabular reasoning, we first
evaluate the performance of the LLM-as-a-judge.
Specifically, we devise reference-guided grad-
ing (Zheng et al., 2023) and let the LLM compare
between the LLM-generated answer against the
ground-truth answer. Specifically, we use Qwen2.5
(32B parameters) and assess if its generated answer
matches the ground-truth answer based on a struc-
tured prompt, and outputs yes or no, as follows:

When it comes to the following question:

Question: {Question}

does the answer "{Answer}" match the
expected response value of the correct
answer "{Correct Value}"?

Consider that if the answer is None, it
means that the value could not be found in
the table. Please conclude your answer with
’answer correct: yes/no’

Table 2: Evaluation of the LLM-as-a-judge proce-
dure on the human-annotated dataset. While the LLM
slightly underestimates correctness – 4.2% of correct
answers are judged to be incorrect – we observe a strong
alignment between predicted and actual (in)correctness
with an accuracy more than 95%.

Pred. Incorrect Pred. Correct
Actual Incorrect 99.2% 0.8%
Actual Correct 4.2% 95.8%

The results of our evaluation (Table 2) demon-
strates that the LLM-as-a-judge yields a high ac-
curacy, identifying 95.8% of correct answers as
correct, and 98% of the incorrect answers as such.
Notably, the absence of false positives (0.8%) high-
lights the model’s reliability in avoiding incorrect
classifications of negative cases as positive.
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5 On the Realistic Tabular Reasoning
Capabilities of LLMs

Here, we first examine how well LLMs can per-
form tabular reasoning tasks using the downscaled
TQA-Bench data (as discussed in Section 3) and
the more reliable LLM-as-a-judge evaluation, and
highlight new insights contextualized in the TQA-
Bench. Then, we extend the benchmark by formal-
izing tabular characteristics commonly found in
practice, such as missing values, and measure the
robustness of LLMs for such realistic variations.

5.1 LLM Selection and Prompts

LLMs for analysis and evaluation We conduct
our analysis on a diverse set of models to ensure
comprehensive evaluation. We include publicly
available models Qwen2.5 (Yang et al., 2024),
Llama3.1 (Grattafiori et al., 2024), DeepSeek-
R1 (Guo et al., 2025), and Mistral (Jiang et al.,
2023). In all cases, we select the 7B parameter
versions (except llama3.1 with 8B) of the models
and utilize the same prompt structure. We also
include the proprietary GPT-4o-mini model (ver-
sion 2024-07-18) (Hurst et al., 2024) representing
a state-of-the-art larger general-purpose model.

For evaluation with the LLM-as-a-judge proce-
dure we, again, devise Qwen2.5 (32B parameters)
for its strength in generating structured outputs, and
use the same prompt introduced in section 4.

Tabular reasoning prompt For evaluating tab-
ular reasoning capabilities of the LLMs, we adopt
a structured prompt template inspired by Qiu et al.
(2024) to guide question answering based on tabu-
lar data2. The prompt instructs the LLM to use the
information from the provided single or multiple
tables to answer a given question. Each table is pre-
sented with a title and its contents. The structure
of the prompt template is as follows:

Answer the question based on these tables:

Table: {Table 1}
Table: {Table 2}

Question: {Question}

This question has only one correct answer.
Please break down the question, evaluate
each option, and explain why it is correct
or incorrect. Conclude with your final
answer.

2We inspected accuracy variance across templates and
didn’t observe a significant difference.

5.2 Insights on Down-scaled Tabular Inputs
Accuracy over various table sizes Our analy-
sis of the TQA-Bench questions and down-scaled
tabular inputs shows that the performance of the
LLMs decreases as the tabular input increases in
size. This is particularly evident in the average
and subtraction tasks (Figure 2 and 3). The only
exception is GPT-4o-mini, which achieves a steady
performance across table sizes for most tasks, and
is generally the best model for tabular reasoning
tasks. Furthermore, our results indicate that LLMs
struggle particularly with more complex reasoning
tasks, such as calculating correlation and subtrac-
tion, where the performance is significantly lower
compared to the simpler tasks like counting and
lookups. A comprehensive overview of the accu-
racy performances across all models and tasks can
be found in appendix A.
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Figure 2: Performance of LLMs on calculating the aver-
age of columns, across varying table sizes. The accuracy
of all models gradually decreases with table size.
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Figure 3: Performance of LLMs on calculating a sub-
traction across columns, across varying table sizes. The
accuracy significantly drops after 4K input size except
for GPT-4o-mini.

Realistic LLM performance on TQA-Bench
We also plot the accuracy of the Qwen2.5 model
(7B params), as found by the TQA-Bench multiple-
choice evaluation, for the average and subtraction
tasks for the 8K sized tabular inputs (★ in Fig-
ures 2 and 3). Our LLM-as-a-judge evaluation
of open-form answers unveils a significant differ-
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Table 3: Accuracies of LLMs across reasoning tasks for tables with token size 4k. Generally, LLMs can reasonably
do basic entity lookups, but show large deficits in more complex reasoning tasks such as calculating averages and
correlations. As expected given the larger model size, GPT-4o-mini shows best performance across tasks.

Model Entity lookup Top selection Average Count Subtraction Sum Correlation

Llama3.1 49.75 22.96 16.33 28.79 20.92 16.08 4.90
Mistral 28.14 14.00 9.14 20.20 5.58 8.50 12.75
Qwen2.5 29.00 15.00 11.28 36.92 7.22 12.50 8.65
Deepseek-r1 20.00 14.56 7.64 25.95 3.90 8.18 20.48
GPT-4o-mini 68.72 44.62 32.83 49.75 36.73 35.86 24.04

ence in accuracy of 30% and 60% for average and
subtraction calculations, respectively, compared
to multiple-choice answering. This insight under-
scores the importance of evaluating models in open-
ended form to better understand their true reasoning
abilities. Across models, we generally observe rela-
tively stronger capabilities in entity lookups, while
selecting a range (top selection) is more challeng-
ing (Table 3). LLMs show larger deficits in more
complex aggregation tasks, such as calculating av-
erages, while the relatively basic task of subtraction
generally appears most challenging.
Model-specific incompatible behaviors During
analysis, we observed notable behaviors in how
models approached tabular reasoning tasks. For
instance, DeepSeek-R1 often struggles with coher-
ence in its chain of thought outputting extracts like
“Wait no—the data doesn’t show that. Wait I’m
getting confused.”, leading to incomplete or incon-
sistent reasoning. Llama3.1, on the other hand, oc-
casionally fails to generate any meaningful output,
and effectively “breaks” under certain conditions,
particularly on larger tables or complex queries.
Additionally, both Qwen2.5 and Llama3.1 attempt
to generate Python code snippets to compute an-
swers, rather than directly providing the response.

5.3 Real-world characteristics of tabular data
We analyze how robust LLMs can reason over tabu-
lar data through their generation capabilities, in the
presence of three variations in the tabular inputs:
missing values, duplicate entities, and column per-
mutations. These variations are common in prac-
tice and resemble either data quality issues or valid
permutations. In what follows, we elaborate on the
desired behavior which goes beyond accuracy (Xu
et al., 2023), for each characteristic. In order to
instill these characteristics in the tabular inputs, we
adapt the symbolic extension of TQA-Bench to
generate new tasks. Symbolic extension works by
manually creating prompt templates and functions
for calculating the ground-truth answers, and us-

ing them to automatically generate combinations
of (question, ground-truth)-pairs.

Missing Values Due to incomplete data collec-
tion or errors during data entry, tables often con-
tain missing values, leading to incomplete infor-
mation (Little and Rubin, 2019). This has been a
longstanding issue for predictive ML, as missing
values can distort analysis and lead to unreliable
results (Emmanuel et al., 2021). To reflect this in
the data, we first identify the cells needed to gen-
erate the answers and randomly remove one of the
relevant cells. We recalculate the ground-truth an-
swer by, effectively, setting the missing value to 0.
The LLM-as-a-judge evaluates two behaviors: the
model’s ability to produce the correct answer de-
spite the missing information (Accuracy), and its
capacity to explicitly acknowledge the absence of
relevant data (Acknowledgement). These criteria
reflect how well the model navigates incomplete
data—whether it can reason effectively with what’s
available—and transparently communicate the lim-
itations introduced by missing values.

Duplicate Entities While duplicate entities are
in violation with the relational data model (Codd,
1979), we often find duplicate rows in tables. We
simulate this by randomly selecting rows and repli-
cating them at random points in the same table.
These entities are intended to be ignored. The
LLM-as-a-judge then evaluates two desired behav-
iors: whether the correct answer has been generated
despite duplicates values (Accuracy), hence ignor-
ing duplicate values, and whether the model ex-
plicitly acknowledges the duplicates in its response
(Acknowledgement).

Structural Variation While tables within some
contexts might reflect a typical column or row or-
der, hence bias an LLM through its training data,
the structural order of tables is insignificant in the
relational data model (Codd, 1979). In line with
prior work for examining robustness of table em-
beddings (Cong et al., 2023), we extract different
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permutations of the same tables by shuffling their
rows and columns. The desired behavior is that the
answer is not affected by different column order
permutations of the input tables. Therefore, we
evaluate if the answer remains unchanged.

5.4 Robustness to Realistic Variation in Tables
Missing Values We observe some mixed behav-
iors in the presence of missing values across tasks
(Table 4). For summation, we observe a signif-
icant drop in accuracy when missing values are
present for llama3.1, which achieves only 8% accu-
racy compared to 16% in the baseline. In contrast,
qwen2.5 actually shows improvements, particularly
for entity lookups where it shows an accuracy of
43% compared to 29%. This may be due to the
model’s (desirable) behavior as it refuses to answer
if the value to-be-looked-up is missing, which is
treated by the judge as a correct response.

At the same time, we find that the models of-
ten acknowledge missing values in their responses,
with both models achieving around 44% in the sum
task and 51% in the average task. This suggests that
while models may struggle with accuracy, they are
still able to recognize and communicate the pres-
ence of missing values in their answers. Still, even
on this metric, the models do not behave reliably
enough for most practical use cases.

Table 4: Results of the Missing Value perturbation
across three aggregation tasks (average, sum and en-
tity lookups) with table size 4k.

Task Model Baseline Acc. Acknow.
Entity lookup llama3.1 50% 47% 57%

qwen2.5 29% 43% 60%
Sum llama3.1 16% 8% 44%

qwen2.5 13% 16% 44%
Average llama3.1 17% 11% 51%

qwen2.5 11% 19% 51%

Duplicate Entities When it comes to dealing
with duplicate entities, the trends displayed in table
5 overall are quite similar to dealing with missing
values, showing a significant decrease in accuracy
in most tasks. A notable observation is that models
are less likely to acknowledge duplicate values,
compared to missing values.

Structural Variations We find that structural
variations, such as column shuffling, have only a
small impact on model performance in most cases
(Table 6), in contrast to the significant performance
decline observed with missing values or duplicate
entities. Interestingly, the robustness to column

Table 5: Results of the Duplication perturbation across
two advanced tasks (average, sum) at table size 2k.
LLMs typically struggle with duplicate values, and fail
to acknowledge duplication in their response.

Task Model Baseline Acc. Acknow.
Sum llama3.1 41% 20% 27%

qwen2.5 30% 31% 8%
Average llama3.1 36% 17% 11%

qwen2.5 36% 20% 6%

order varies across models and tasks—some ex-
hibit resilience, while others are mildly affected.
This shows a divergence from previous findings
in embedding-based studies (Cong et al., 2023),
which reported a sensitivity to column order in the
representation space.

Table 6: Impact of column shuffling on select reasoning
tasks with a table size of 2k, showing difficulties for
aggregation queries particularly for the llama model.

Task Model Baseline Acc.
Entity lookup llama3.1 50% 46%

qwen2.5 42% 34%
Sum llama3.1 41% 30%

qwen2.5 30% 28%
Average llama3.1 36% 28%

qwen2.5 36% 32%

6 Conclusion
While recent studies suggest LLMs exhibit rea-
sonable tabular reasoning abilities beyond natural
language tasks, these studies often lack reliable
evaluations and robustness checks, prompting our
study into how well LLMs truly reason over tabu-
lar inputs. First, we surface limitations of common
free-form text evaluation metrics, such as Sacre-
Bleu, which fail to distinguish between correct and
incorrect answers in tabular reasoning tasks. We
demonstrate that an LLM-as-a-judge is more reli-
able for this purpose. A revised evaluation of an ex-
isting benchmark with the LLM-as-a-judge unveils
a significant deficit in tabular reasoning capabili-
ties of LLMs. Second, we analyze the robustness
of tabular reasoning capabilities of LLMs through
queries of various complexities and find that they
can be sensitive to realistic variations like missing
values, even for relatively simple tasks. Moreover,
we find that LLMs insufficiently acknowledge such
undesired variations risking errors in downstream
interpretation. These findings underscore the need
for further advancements in LLM architectures and
training to improve their robustness to real-world
tabular data.
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A Full Benchmark

This table provides a comprehensive overview of the performance of various LLMs across different
reasoning tasks (e.g., entity lookup, top selection, average, etc.) for tabular data of varying sizes (1k to 8k
tokens).

Size Model Entity lookup Top Selection Average Count Subtraction Sum Correlation
1k

llama3.1 43.43 30.15 47.21 59.30 50.85 52.02 18.64
mistral 30.15 31.31 31.31 47.50 29.78 33.67 36.75

qwen2.5 49.24 30.30 55.78 65.15 63.13 56.78 37.82
deepseek-r1 34.01 29.80 54.31 69.19 39.33 50.00 47.46
gpt-4o-mini 41.62 36.18 48.48 70.56 36.72 54.50 45.38

2k
llama3.1 76.38 49.49 35.68 44.95 45.45 41.21 11.21

mistral 58.08 36.18 23.23 28.00 21.81 17.17 16.82
qwen2.5 66.33 42.86 35.86 53.27 50.00 30.26 22.64

deepseek-r1 42.93 28.28 25.89 49.75 21.05 26.26 24.07
gpt-4o-mini 69.54 47.24 39.90 57.07 32.98 37.76 28.44

4k
llama3.1 49.75 22.96 16.33 28.79 20.92 16.08 4.90

mistral 28.14 14.00 9.14 20.20 5.58 8.50 12.75
qwen2.5 29.00 15.00 11.28 36.92 7.22 12.50 8.65

deepseek-r1 20.00 14.56 7.64 25.95 3.90 8.18 20.48
gpt-4o-mini 68.72 44.62 32.83 49.75 36.73 35.86 24.04

6k
llama3.1 21.11 15.15 9.50 19.60 5.08 7.50 4.00

mistral 11.56 12.00 8.04 16.00 2.54 4.06 8.82
qwen2.5 16.16 8.00 7.04 19.50 4.57 6.53 9.80

deepseek-r1 7.00 11.50 9.00 16.67 4.12 5.50 9.90
gpt-4o-mini 68.53 42.13 17.68 38.50 35.53 16.08 16.16

8k
llama3.1 12.50 10.55 8.04 18.00 3.55 2.54 3.03

mistral 9.00 10.10 10.00 8.00 5.53 2.51 10.31
qwen2.5 8.04 7.54 8.08 11.50 6.00 1.51 9.00

deepseek-r1 8.04 12.00 5.08 13.00 4.02 4.00 9.09
gpt-4o-mini 64.00 35.86 15.23 32.16 39.59 14.80 11.22
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