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Abstract
This work reframes the Text-to-SQL task as
a pathway for teaching large language mod-
els (LLMs) to reason over and manipulate tab-
ular data—moving beyond the traditional fo-
cus on query generation. We propose a two-
stage framework that leverages SQL supervi-
sion to develop transferable table reasoning ca-
pabilities. First, we synthesize detailed chain-
of-thought (CoT) traces from real-world SQL
queries, providing step-by-step, clause-level
supervision that teaches the model how to tra-
verse, filter, and aggregate table fields. Second,
we introduce a Group Relative Policy Optimiza-
tion (GRPO) reinforcement learning objective
that connects SQL execution accuracy to gen-
eralizable reasoning by encouraging steps that
extend beyond task-specific syntax and transfer
across datasets.

Empirically, our approach improves perfor-
mance on standard Text-to-SQL benchmarks
and achieves substantial gains on reasoning-
intensive datasets such as BIRD, CRT-QA and
Tablebench, demonstrating enhanced general-
ization and interpretability. Specifically, the
distilled-quantized LLaMA-8B model achieved
a 34% relative increase in exact match scores
on CRT-QA when trained on Text-to-SQL
tasks, while Qwen-2.5-7B achieved a 10% and
Qwen-2.5-14B a 6% relative increase. These
results suggest that SQL can serve not only as
a target formalism but also as an effective scaf-
fold for learning robust, transferable reasoning
over structured data.

1 Introduction

Recent advancements in LLMs have substantially
improved performance on Text-to-SQL tasks, trans-
lating natural language into executable SQL queries
over relational databases (Gao et al., 2023).

Progress has been driven primarily by supervised
fine-tuning (SFT) on SQL-focused datasets (e.g.,
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Spider (Yu et al., 2018), BIRD (Li et al., 2023)) or
prompt-based adaptation (Sun et al., 2023). How-
ever, these methods often narrowly optimize for
syntactic correctness or execution accuracy, over-
looking deeper reasoning over underlying data
structures—resulting in degraded performance in
real-world settings (Liu et al., 2024; Nascimento
et al., 2025).

This highlights a broader issue: Text-to-SQL is
frequently treated as a standalone task, rather than
as a facet of the more general challenge of reason-
ing over tabular data (Liu et al., 2024). SQL, as a
formal language, provides a vehicle for structured
reasoning over relational tables; thus, models gen-
erating SQL should ideally also support broader
forms of table-based question answering (e.g., Tab-
Fact (Chen et al., 2019), WikiTQ (Pasupat and
Liang, 2015), FinQA (Chen et al., 2021)).

Yet, models fine-tuned exclusively for Text-to-
SQL often exhibit degraded performance on re-
lated tasks, suggesting overfitting to SQL-specific
patterns at the expense of flexible reasoning (Ab-
hyankar et al., 2024). Methods like H-STAR (Ab-
hyankar et al., 2024) integrate symbolic and se-
mantic reasoning for improved table comprehen-
sion, while Plan-of-SQLs (POS) (Brugere et al.,
2024) emphasize interpretability and QA perfor-
mance. However, both approaches tend to bias the
model toward SQL-centric reasoning, potentially
limiting generalization (Nascimento et al., 2025).
Inspired by DeepSeek-R1 (Guo et al., 2025), we
explore whether reinforcement learning (RL) can
foster emergent reasoning capabilities that connect
Text-to-SQL with general tabular QA.

We propose a two-stage approach depicted in
Figure 1. First, we introduce a supervised fine-
tuning phase leveraging synthetically generated
CoT reasoning traces to provide structured guid-
ance between the natural language input and its cor-
responding SQL representation. Unlike SynSQL-
2.5 (Li et al., 2025b), which emphasizes data scale,
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our approach focuses on generating high-quality
CoT traces grounded in real data points. Second,
we apply GRPO (Shao et al., 2024), a reinforce-
ment learning method that compares multiple can-
didate outputs, aligning SQL execution accuracy
and query structure with broader reasoning fidelity.

While prior work (e.g., Reasoning-SQL (Pour-
reza et al., 2025), SQL-R1 (Ma et al., 2025)) has
applied RL to SQL generation, our key contribution
lies in bridging Text-to-SQL with general tabular
reasoning. We show that models trained with our
two-stage framework outperform SFT baselines not
only on SQL benchmarks but also on reasoning-
intensive QA datasets such as CRT-QA (Zhang
et al., 2023) and Tablebench (Wu et al., 2025), illus-
trating that SQL generation, when properly framed,
can serve as a foundation for broader structured
data reasoning.

Our key contributions are:

1. Synthetic CoT Supervision: We present a
method for generating synthetic reasoning
traces tailored to the SQL domain, offering
structured and interpretable supervision dur-
ing fine-tuning. The synthetic data is made
publicly available1.

2. Reinforcement Learning with GRPO for
Generalization: We apply GRPO not only to
improve SQL execution accuracy, but also to
regularize model behavior toward more gener-
alizable table reasoning.

3. Empirical Evidence of Cross-Task Gains:
Our two-stage method improves performance
on standard Text-to-SQL benchmarks while
enhancing reasoning ability on diverse QA
datasets such as CRT-QA and Tablebench.

The training and evaluation code is made publicly
available2.

2 Background

2.1 Reasoning in Language Models
LLMs have demonstrated strong capabilities in
general-purpose reasoning tasks, including arith-
metic, logic, and multi-step decision-making.
These capabilities are often enhanced by prompt-
ing techniques, tool integration, and reinforcement

1https://huggingface.co/datasets/jls205/
synthetic_cot_traces_clinton/blob/main/cot.csv

2https://github.com/josefastoisser/sparks_of_
tabular_reasoning

learning (Jaech et al., 2024; Guo et al., 2025). A
growing line of work has focused on intermedi-
ate reasoning structures, such as CoT prompting,
which guide models through decomposed, inter-
pretable inference steps (Zhao et al., 2025).

In particular, long-form CoT reason-
ing—requiring detailed, iterative solutions—has
shown benefits in domains like mathematics,
program synthesis, and multi-hop question
answering (Team et al., 2025). Unlike short-form
CoT, long-form reasoning involves planning,
reflection, and consistency across intermediate
steps. Recent studies have shown that such
behavior can be learned through data-efficient
supervised fine-tuning and parameter-efficient
adaptation methods such as low-rank updates
(LoRA) (Li et al., 2025a). Beyond training-time
learning, test-time methods like self-consistency
and re-ranking over multiple generations have
been shown to improve reasoning reliability (Wei
et al., 2022; Wang et al., 2022).

Complementary to these approaches, reinforce-
ment learning has been explored as a way to pro-
mote reasoning beyond imitation, allowing models
to discover extended inference patterns through
reward-driven optimization (Qin et al., 2024; Chen
et al., 2025; Shinn et al., 2023).

2.2 LLMs on Text-to-SQL
Mapping natural language to executable SQL in-
volves three principal challenges: interpreting user
intent, understanding database schema, and gener-
ating syntactically and semantically correct queries
(Hong et al., 2024; Stoisser et al., 2025). LLMs
have shown strong performance on this task, sup-
ported by progress in semantic parsing and schema
linking (Liu et al., 2024; Shi et al., 2020). Recent
work continues to refine LLMs across subcompo-
nents of the task, including question understanding
(Pourreza and Rafiei, 2023), schema comprehen-
sion (Yuan et al., 2025), and SQL generation (Lee
et al., 2024).

To move beyond supervised fine-tuning, rein-
forcement learning has been proposed as a means
of aligning model behavior with downstream per-
formance objectives (Jiang et al., 2025). GRPO
compares multiple candidate outputs, offering a
denser learning signal that mitigates the limitations
of sparse or binary rewards (Pourreza et al., 2025).
SQL-R1 builds on this idea by integrating rein-
forcement learning with synthetic CoT supervision,
achieving competitive results on benchmarks such
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as BIRD and WikiSQL (Ma et al., 2025; Li et al.,
2025b).

These approaches suggest that supervision
grounded in SQL execution can serve not only as
a means of training for query generation, but as a
proxy for inducing structured reasoning in LLMs.

2.3 LLMs on Tabular Question Answering

LLMs have increasingly been applied to ques-
tion answering over structured tabular data—a task
that combines natural language understanding with
symbolic reasoning. In the typical formulation,
models receive a serialized table and a natural lan-
guage query, and are tasked with producing an accu-
rate answer. While this setting is straightforward, it
presents several challenges, including query intent
disambiguation, context-aware retrieval, numeri-
cal reasoning, and robust handling of multi-turn
interactions (Pal et al., 2023).

Recent work has introduced frameworks that ex-
tend LLM capabilities in this domain. The Chain-
of-Command approach, for instance, reformulates
user queries into structured commands that guide
table interaction (Zha et al., 2023). Other strategies
improve retrieval through query-based sampling
or adaptive search mechanisms (Sui et al., 2023).
Multi-turn dialogue settings have also gained at-
tention, where task decomposition and iterative
refinement have shown improvements in reasoning
depth and consistency (Yu et al., 2025).

Benchmarks such as CRT-QA provide a foun-
dation for evaluating LLM performance on table
reasoning tasks (Zhang et al., 2023; Ashury-Tahan
et al., 2025). These settings demand not only the
ability to parse structured inputs, but also to inte-
grate logical, numerical, and contextual cues across
diverse formats. Together, these developments sug-
gest that tabular question answering offers a rich
and challenging testbed for evaluating the reason-
ing capabilities of LLMs.

3 Methodology

Our methodology is outlined in Figure 2, where we
see the breakdown into 6 steps.

3.1 Generating Synthetic Reasoning Traces
for SQL Tasks

In the first stage, we construct synthetic CoT
traces for Text-to-SQL questions using a structured
prompting pipeline. The core generation process
employs a LLMs trained on 25 diverse datasets (see

Appendix A), following the methodology of Boub-
novski et al. (2025). Specifically, we prompt the
o3-mini model to answer SQL-related questions
while producing intermediate reasoning steps in
natural language as shown in Appendix B.1. A
second language model is used as a verifier to as-
sess both the correctness of the final answer and
the internal reasoning trace (prompt details in Ap-
pendix B.2).

This framework yields a dataset of 3,174 exam-
ples containing only correctly reasoned outputs,
which we use as high-quality supervision during
model fine-tuning.

3.2 Training and Reward Design

To promote tabular reasoning in large-scale lan-
guage models for natural language to SQL tasks,
we adopt a two-stage training approach inspired by
DeepSeek-R1 (Guo et al., 2025). In the first stage,
we apply supervised fine-tuning on synthetic rea-
soning traces generated by o3-mini. This step im-
proves the model’s ability to follow instructions, de-
compose complex tasks, and generate interpretable
outputs within the SQL domain.

In the second stage, we apply reinforcement
learning to refine the model’s reasoning behavior
and align it more closely with execution-based per-
formance objectives. This training encourages con-
sistency between intermediate reasoning steps and
the final executable output, enabling the model to
generalize beyond dataset-specific patterns in the
data.

3.2.1 Reinforcement Learning

To refine model behavior beyond supervised learn-
ing, we employ GRPO, a reinforcement learning
method originally introduced in Deepseekmath
(Shao et al., 2024). This approach enables more
stable optimization by comparing multiple outputs
for the same input and assigning relative rewards.
By evaluating groups of candidate outputs rather
than individual sequences in isolation, the model re-
ceives finer-grained feedback that encourages con-
sistent and generalizable reasoning.

Formally, for a given natural language ques-
tion q and its associated database schema, the
model generates a set of G candidate SQL queries
{o1, o2, . . . , oG}. Each candidate is scored using
a task-specific reward function, and the relative
advantage Ai is computed for each output. The
optimization objective is given by:
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Figure 1: Training on Text-to-SQL, Evaluating on Dual Tasks. Our framework is trained solely on Text-to-SQL
data, using structured supervision from CoT traces and reinforcement learning objectives. At evaluation time,
we assess performance on both Text-to-SQL benchmarks and tabular question answering tasks. This setup tests
whether SQL-centered training can induce reasoning capabilities that generalize beyond query generation to broader
table-based inference.

Figure 2: Overview of the training pipeline. Given
a natural language question and schema, we generate
SQL queries and CoT traces using a pretrained o3-mini.
A second model filters these outputs by judging cor-
rectness and consistency. Verified traces are used for
supervised fine-tuning on Clinton, followed by GRPO
on the BIRD dataset. This two-stage training process
promotes generalization across both SQL generation
and tabular question answering.

JGRPO(Θ) =E

[
1

G

G∑

i=1

min

(
πθ(oi|q)
πθold(oi|q)

Ai,

clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)]

− βDKL(πθ||πref) (1)

Here, πθ denotes the current policy, πθold is the
policy before the update, and πref is a frozen refer-
ence policy used for regularization. The hyperpa-
rameters ϵ and β control the clipping threshold and
divergence penalty, respectively.

3.2.2 Reward Design
We define several reward functions tailored to the
Text-to-SQL task, each capturing different dimen-
sions of query quality. These rewards guide the
optimization process during reinforcement learn-
ing with GRPO.

1. Execution-Based Reward: The primary ob-
jective in Text-to-SQL is to generate queries
that execute to the correct result. Traditional
binary execution rewards offer no gradient
for near-correct predictions. To address this,
we implement a reward function that lever-
ages a language model to count orthographic
changes—textual mutations between the pre-
dicted and reference queries, such as token
insertions, deletions, or substitutions. The cor-
responding prompt can be found in B.3. The
reward is computed as:

Rexec =
1

x+ 1
, (2)

where x is the number of detected changes.
This formulation provides a smoother feed-
back signal that penalizes incorrect queries
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proportionally, even when they are close to
correct.

2. String Matching Reward: This reward com-
pares the predicted and gold SQL strings by
identifying the longest contiguous matching
subsequence. It is computed as the ratio
of matching characters to the total number
of characters across both sequences, thereby
encouraging partial correctness even when
queries are not exact matches.

3. Component-Level Matching Reward: To
capture semantic equivalence beyond surface
form, we compute overlap between query
components such as SELECT, WHERE, and
GROUP BY – using the F1 score as in the com-
ponent matching metric (Yu et al., 2018). This
allows the model to be rewarded for capturing
the correct logical structure, even when query
formatting varies.

4. LLM Judge Reward with Classes: Pre-
trained language models exhibit strong sen-
sitivity to syntactic correctness and logical
coherence. Building on the literature that uti-
lizes pretrained language models to provide
continuous rewards based on these criteria for
SQL queries (Pourreza et al., 2025), we ex-
tend this approach to categorize model out-
puts into ordinal quality classes—Very Bad,
Bad, Average, Above Average, Good, and Ex-
cellent, see Appendix B.4. This categorical
scoring is adapted from Xin et al. (2024) and
enables more interpretable and consistent su-
pervision, particularly in filtering low-quality
outputs during training.

All language model-based evaluations are per-
formed using OpenAI’s o3-mini model (Jaech et al.,
2024), which serves as both a scorer and judge for
reward construction.

4 Experiments

We design our experiments to investigate the fol-
lowing research questions:

• RQ1: How does the use of synthetic reason-
ing traces during supervised fine-tuning im-
pact Text-to-SQL performance?

• RQ2: Can our two-stage frame-
work—combining supervised fine-tuning

and GRPO—facilitate the induction of
transferable tabular reasoning capabilities?

• RQ3: Which reward functions in GRPO con-
tribute most significantly to improved table-
based reasoning?

4.1 Setup

Evaluation Benchmarks: We evaluate our frame-
work across two primary tasks: Text-to-SQL and
tabular question answering. For Text-to-SQL, we
utilize the Clinton A and BIRD minidev 3 datasets.
For tabular question answering, we evaluate per-
formance on the Tablebench Fact Checking dataset
(Wu et al., 2025), as it provides a comprehensive es-
timate of model understanding of tables across 18
fields. Additionally, to emphasize complex reason-
ing, we utilize the CRT-QA dataset (Zhang et al.,
2023), which focuses on complex table-based rea-
soning, incorporating multi-step operations and in-
formal reasoning techniques.

Evaluation Metrics: We employ task-
appropriate evaluation metrics for each benchmark.
For Text-to-SQL tasks, we report execution
accuracy, defined as the exact match between
the predicted and reference SQL query results.
Given the limited access to the full database within
Clinton, we utilize OpenAI’s o3-mini model as
a proxy for execution for this dataset, assessing
query correctness based on structural and semantic
alignment. For CRT-QA, we use Exact Match to
compare the predicted answer with the ground
truth. For Tablebench, we employ the ROUGE
score as outlined in the original paper (Wu et al.,
2025).

Training Settings: We utilize three base
models: Qwen-2.5-7B-Instruct, Qwen-2.5-14B-
Instruct, and a 4-bit quantized version of the
distilled DeepSeek-R1-Distill LLaMA 8B model.
This selection enables us to evaluate both distilled
and quantized architectures, as well as smaller and
larger models. For supervised fine-tuning, we use
a learning rate of 2 × 10−4 and a batch size of 1.
During reinforcement learning with GRPO, we fix
the learning rate at 1× 10−6. Each GRPO training
instance consists of a natural language question and
its associated schema; for each prompt, the model
generates 8 candidate completions used to com-
pute group-based rewards. Further implementation
details can be found in Appendix C.

3https://github.com/bird-bench/mini_dev
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4.2 Tabular Aha-Moments

During reinforcement learning with GRPO, we
observe instances of emergent tabular reasoning,
which we term Tabular Aha-Moments. These mo-
ments, inspired by the Aha Moment concept from
DeepSeek-R1 (Guo et al., 2025), occur when the
model, provided only a natural language question
and schema (but no table content), implicitly re-
constructs the structure of the underlying table and
uses this to solve the query. An example of this
behavior is shown in Figure 4, where the model
demonstrates schema-grounded inference without
explicit tabular context during the training process.

When evaluated on tabular question answering
tasks, the model often invokes SQL-like structures
as intermediate reasoning tools—even when SQL
output is not required. This is illustrated in Fig-
ure 3, where the model constructs an internal SQL
representation to derive a binary answer. This re-
flects a bidirectional inductive bias: the model not
only learns to generate SQL from questions but also
learns to use SQL representations to support rea-
soning over tables. These findings highlight the po-
tential for GRPO to induce transferable, structure-
aware reasoning in LLMs.

4.3 Benefit of CoT Supervision

Table 1 reports the performance of our supervised
models across Text-to-SQL and tabular question
answering tasks. Comparing models fine-tuned
with (SFT-CoT) and without (SFT) CoT supervi-
sion, we observe that including reasoning traces
slightly reduces performance on the in-domain
Clinton dataset, but improves generalization to un-
seen SQL benchmarks (BIRD) and table-based rea-
soning tasks (CRT-QA, Tablebench).

We attribute this to the inductive bias intro-
duced by reasoning supervision: models exposed
to intermediate inference steps are more likely to
learn transferable patterns rather than overfitting to
schema-specific templates. Moreover, fine-tuning
with CoT traces provides a more structured initial-
ization for reinforcement learning, ensuring that the
GRPO stage begins from semantically grounded
outputs.

CoT supervision yields markedly different gains
for LLaMA and Qwen due to their architectural
disparities. In our experiments, a distilled and
quantized LLaMA model received a substantially
larger performance boost from CoT supervision
than the uncompressed Qwen model. We attribute

this discrepancy to LLaMA’s compressed nature:
distillation and low-precision quantization reduce
its representational capacity and can weaken its in-
nate reasoning ability. Consequently, providing
explicit step-by-step reasoning guidance during
training allows LLaMA to compensate for these
lost details, resulting in outsized improvements. In
contrast, Qwen—being neither distilled nor quan-
tized—retains a higher precision and fuller pre-
trained capacity for reasoning, which means it al-
ready performs strongly on complex tasks before
CoT fine-tuning. As a result, Qwen’s robust base-
line reasoning ability leaves less headroom for dra-
matic gains. This contrast highlights that CoT su-
pervision is especially critical for enhancing com-
pressed models like LLaMA.

4.4 Text-to-SQL Performance
The combination of supervised fine-tuning with
CoT (SFT-CoT) and GRPO yields marked improve-
ments in Text-to-SQL performance. While the
gains on the BIRD dataset—where GRPO was ex-
plicitly trained—are anticipated, the enhancement
on the Clinton dataset is more notable. This in-
dicates that GRPO not only fine-tunes models to
specific tasks but also encourages broader SQL
comprehension and reasoning capabilities, facilitat-
ing generalization within the Text-to-SQL domain.

In particular, the SFT-CoT + GRPO model
shows a strong ability to generalize, demonstrat-
ing that models trained on real-world tasks can
effectively perform even on data they haven’t seen
during training, provided they have a strong foun-
dational understanding of SQL reasoning.

4.5 Zero-shot Question Answering Tabular
Reasoning Performance

Table 1 demonstrates that our combined approach
of SFT and GRPO, originally fine-tuned on Text-
to-SQL data, also enhances tabular reasoning per-
formance in zero-shot settings. Specifically, when
evaluated on CRT-QA and Tablebench, we observe
improved reasoning across the model, showcas-
ing that the model’s exposure to SQL structures
helps it tackle general tabular question answering
tasks even when SQL generation is not explicitly
required.

The zero-shot performance is indicative of the
transferability of the reasoning skills learned during
SQL task training. By implicitly learning to rea-
son over structured tables in the SQL framework,
the model becomes better at navigating more com-
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Model Clinton (LLM-EXE) Bird (EXE) CRT-QA (EM) Tablebench (Rouge)
o1 60.7 28.3 61.3 64.4
LLaMA Base 44.4 8.1 43.3 57.1
LLaMA SFT 62.1↑ 17.7 3.0 33.7 49.9
LLaMA SFT-CoT 56.3 9.1 47.7 57.2
LLaMA SFT-CoT-GRPO 57.0 14.2↑ 6.1 58.1↑ 14.8 61.1↑ 4.0
Qwen-2.5-7B-Instr Base 56.1 18.9 49.0 61.6
Qwen-2.5-7B-Instr SFT 66.6 ↑ 10.5 9.3 45.3 52.2
Qwen-2.5-7B-Instr SFT-CoT 59.6 19.1 46.2 53.8
Qwen-2.5-7B-Instr SFT-CoT-GRPO 59.9 23.1 ↑ 4.2 54.0 ↑ 5.0 63.2↑ 1.6
Qwen-2.5-14B-Instr Base 55.1 22.9 56.1 60.7
Qwen-2.5-14B-Instr SFT 68.6 ↑ 13.5 19.7 52.2 57.8
Qwen-2.5-14B-Instr SFT-CoT 58.6 23.5 52.8 60.6
Qwen-2.5-14B-Instr SFT-CoT-GRPO 59.2 27.2 ↑ 4.3 59.2 ↑ 3.1 63.3 ↑ 2.6

Table 1: Performance comparison of OpenAI o1, the 4-bit quantized version of the distilled Deepseek-R2 LLaMA
8B model, the Qwen-2.5-7B-Instruct model (Qwen-2.5-7B-Instr), and the Qwen-2.5-14B-Instruct model (Qwen-2.5-
14B-Instr) evaluated across various datasets. This table compares the performance of untrained models (Base), those
supervised fine-tuned on the Clinton Dataset (SFT), models fine-tuned with Chain-of-Thoughts (SFT-CoT) on the
Clinton Dataset, and models that have undergone SFT-CoT on the Clinton Dataset and GRPO on the BIRD Dataset.
Evaluation scores include execution accuracy (EXE), execution accuracy determined by an OpenAI o3-mini LLM
judge (LLM-EXE), exact match scores (EM), and Rouge score (Rouge).

plex question answering tasks, further underlining
the value of using SQL as a foundational tool for
structured data reasoning.

4.6 Reward Ablation

In this section, we investigate the contribution of
various reward functions in our GRPO training.
Table 2 presents the results of our ablation study,
evaluating the impact of different reward configu-
rations on the model’s performance on the BIRD,
CRT-QA and Tablebench tasks. Specifically, we
analyze the effect of different combinations of re-
wards—including execution-based, string match-
ing, component-level matching, and LLM-based
judgment rewards—on the accuracy of SQL ex-
ecution and tabular question answering. Due to
computational costs, we utilize the 7B and 8B mod-
els.

Ablation studies indicate that string matching
serves as the most effective single reward due to
its continuous nature, facilitating initial learning.
However, exclusive reliance on string matching can
lead to diminished performance in later training
stages. We observe that combining string matching
with additional reward mechanisms enhances over-
all effectiveness, as the initial continuous reward
provides a substantial learning advantage. The
most promising two-reward combination identified
is string matching coupled with the LLM Judge
Reward with classes. This synergistic approach ef-
fectively merges the continuous evaluation of string
accuracy with the discrete assessment of general
SQL quality, thereby creating a robust framework
for improved model performance.

From the results in Table 2, we observe that in-
corporating a broader range of reward functions

Reward Configuration BIRD CRT-QA Tablebench
Best Reward (LLaMA) 11.5 57.8 60.1
Best Reward (Qwen-2.5-7B-Instr) 19.6 53.9 62.7
Best 2 Rewards (LLaMA) 12.1 56.9 60.3
Best 2 Rewards (Qwen-2.5-7B-Instr) 20.0 53.2 64.5
Best 4 Rewards (LLaMA) 14.2 58.1 61.1
Best 4 Rewards (Qwen-2.5-7B-Instr) 23.1 54.0 63.2

Table 2: Ablation study of reward configurations.
The models initially underwent SFT on Chain-of-
Thought traces on Clinton, followed by GRPO on BIRD,
where specific reward functions were applied. Perfor-
mance is evaluated across the best GRPO reward con-
figurations (best one, two, and four rewards) for each
model. Evaluation scores include execution accuracy
for BIRD, exact match for CRT-QA and Rouge for
Tablebench.

generally improves model performance. For in-
stance, the best four rewards configuration shows
significant improvements on CRT-QA for the
LLaMA model, indicating that a more diverse set
of feedback signals enhances generalization across
tasks. This suggests that combining different re-
ward signals allows the model to better capture
both syntactic correctness (in SQL) and logical co-
herence (in tabular reasoning), leading to a more
balanced and accurate reasoning process.

5 Conclusion

In conclusion, our experiments demonstrate that
integrating reinforcement learning with a super-
vised pretraining phase significantly enhances the
model’s ability to reason over tabular data. Notably,
the distilled quantized LLaMA-8B model achieved
a 34.2% relative performance improvement on the
CRT-QA dataset, while the Qwen-2.5-7B model
saw a 10.2% increase and the Qwen-2.5-14B model
5.5% relative increase, underscoring the efficacy
of our two-stage framework in optimizing SQL
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Figure 3: SQL-Structured Reasoning in Tabular QA.
An LLM answering a natural language question over
a table. While the output is a binary response ("Yes"),
the model’s internal reasoning implicitly follows an
SQL-like logic: it compares subsets of rows filtered by
different conditions to support its answer. This illus-
trates how models may invoke formal query structures
even when the task does not explicitly require SQL, re-
flecting an internal alignment between table QA and
SQL semantics.

execution and fostering transferable reasoning for
complex question answering tasks. These findings
suggest that SQL serves not only as a task-specific
format but also as a foundational scaffold for devel-
oping robust tabular reasoning skills in LLMs.

Limitations

Our study focuses on medium-scale foundation
models—distilled LLaMA 8B, Qwen-7B, Qwen-
14B —whose exact pretraining corpora are undocu-
mented. As a result, we cannot determine coverage
or gaps across domains, languages, or proprietary
material. This opacity complicates any analysis of
domain blind spots, spurious correlations, or mem-
orization risks. Moreover, the relatively modest
parameter counts of these models may limit perfor-
mance on tasks requiring deep domain expertise,
such as biomedical or legal reasoning.

We evaluate tabular reasoning using CRT-QA
and Tablebench, with o3-mini serving as an auto-
mated judge. While expedient, this setup lacks the
nuance of human evaluation, particularly for com-
plex reasoning and semantic alignment. Addition-
ally, standard Text-to-SQL and tabular QA bench-
marks may under-represent the complexity, ambi-
guity and noise present in real-world data, making
our results more indicative of structured reasoning
progress than deployment readiness.

Our current framework employs only two train-
ing stages. In contrast, multi-phase pipelines such
as R1 leverage up to four stages, including instruc-
tion tuning and iterative CoT refinement. While
our approach prioritizes simplicity and efficiency,
it may sacrifice opportunities for deeper alignment

Figure 4: Table-Guided CoT in LLMs for SQL Gen-
eration. A reasoning trace from an LLM translating a
natural language question into SQL. The model first in-
terprets the task by examining the schema and example
table rows, breaks the logic down into actionable steps,
and validates the final SQL query through hypothetical
execution. This illustrates how structured table under-
standing can guide accurate SQL synthesis.

or curriculum structuring.
Future research should address these limitations

by exploring larger, better-documented models,
human-in-the-loop evaluation, and more diverse
datasets. Additional training stages—such as pre-
CoT bootstrapping or domain-adaptive pretrain-
ing—may further enhance generalization and ro-
bustness in real-world table reasoning.
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A Summary of Clinton Dataset

We conduct part of our evaluation using the
Clinton/Text-to-sql-v1 dataset,4 a large-scale
compilation of natural language to SQL examples
spanning a broad set of domains. This benchmark
includes 26 individual datasets, covering academic
records, medical databases, entertainment meta-
data, government statistics, and more.

Each example in the dataset consists of a natu-
ral language query, an associated database schema,
and a corresponding SQL statement. Some subsets
also include table content or ground-truth execution
results. The diversity in schema complexity and do-
main coverage makes this benchmark well-suited
for evaluating both generalization and transfer in
Text-to-SQL and tabular reasoning models.

Key datasets include:

• Spider (Yu et al., 2018) – Complex, cross-
domain Text-to-SQL benchmark.

• WikiSQL (Zhong et al., 2017) – Large-scale
dataset with simple queries over Wikipedia
tables.

• ATIS (Hemphill et al., 1990) – Airline travel
information with traditional semantic parsing
annotations.

• MIMICSQL (Wang et al., 2020) and eICU
(Pollard et al., 2018) – Clinical databases for
medical question answering.

We also include lesser-known and synthetic
datasets such as Criteria2SQL (Fang et al., 2022),
SEDE (Hazoom et al., 2021), SQuALL (Shi et al.,
2020), and NVBench (Wang and Crespo-Quinones,
2023), along with public domain tabular corpora
like IMDb, Yelp, and historical sports or wildfire
datasets.

This variety allows us to test the ability of LLMs
to reason across database schemas, interact with
realistic tabular structures, and generalize beyond
fixed SQL templates.

4https://huggingface.co/datasets/Clinton/
Text-to-sql-v1

B Prompts

B.1 Creating Synthetic CoT

This section outlines the structure of prompts de-
signed for SQL query generation tasks. Each
prompt features SQL table schemas and clear in-
structions, facilitating the generation of valid SQL
queries using SQLite syntax. The expert guidance
within the prompts emphasizes the requirement to
articulate the reasoning behind the constructed SQL
queries. By utilizing this approach, we aim to train
models that can effectively understand the context
of relational data and generate precise queries that
meet specific operational goals, thereby enhancing
the overall interpretability and accuracy of auto-
mated SQL generation.

You are a SQL expert. Below are SQL table schemas paired with instructions
that describe a specific task. Using valid SQLite syntax, write a response that
appropriately completes the request for the provided tables.
SCHEMA: schema
INSTRUCTIONS: specific task instructions
When answering, provide reasoning for the SQL query you create using the
following template:
<sql> Write the SQL query here, ensuring it adheres to SQLite syntax and
effectively accomplishes the task described in the instructions. </sql>

B.2 Evaluation of Synthetic CoT

This section specifies a prompt for evaluating the
correctness of SQL queries based on a defined
schema and a reference SQL query. The prompt
clearly delineates the evaluation task for the SQL
expert, presenting the query to be evaluated, the rel-
evant schema, and the correct SQL reference. The
evaluator is instructed to determine whether the
provided SQL query is correct or incorrect, with
responses limited to "Correct" or "Wrong." This
structured approach facilitates precise assessment
of SQL queries, contributing to the development of
robust models capable of generating and validating
SQL syntax effectively.

You are an SQL expert, and your task is to evaluate whether the SQL query
below is correct based on the provided schema and the correct SQL reference.
SQL Query: ans.sql
Schema: schema
Correct SQL: correct_sql
Return ONLY "Correct" or "Wrong".

B.3 LLM Judge for Execution Based Reward

For our Execution Reward in Group Relative Policy
Optimization (GRPO) the LLM judge is instructed
to count the number of orthographic changes re-
quired to convert each predicted query into the cor-
responding correct query. The reward is computed
using the following equation:
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Rexec =
1

x+ 1
, (3)

where x is the number of detected changes. This
methodology provides a more continuous mea-
sure of execution accuracy, crucial for refining the
model’s performance.

You are an SQL expert. Count how many changes you need to make to get the
following predicted queries correct.
Predicted Queries (one per line): queries_to_rank
For reference, use this Schema: schema.
Here is the correct query: true_query
You should count the number of Orthographic elements you need to change
from the predicted queries to the correct query.
ONLY RETURN a JSON object with a single ’scores’ field containing a list
of num_queries numbers reflecting the number of changes needed for each
predicted query.

B.4 LLM Judge with Classes

The LLM judge reward is designed to evaluate
the quality of predicted SQL queries by compar-
ing them to a reference correct query. In this task,
the judge is instructed to assign a grade to each
predicted query on a scale from ’Very bad’ to ’Ex-
cellent.’ The grading criteria are explicitly defined,
allowing the judge to assess various aspects of the
queries, including grammatical correctness, logical
accuracy, and overall fidelity to the correct query.
This structured grading system enables a nuanced
analysis of the model’s output quality, providing
insights that facilitate targeted improvements in
query generation.

Compare these SQL queries to the correct query and grade each one as: ’Very
bad’, ’Bad’, ’Above average’, ’Good’, or ’Excellent’. Use the following grading
system, and the correct query as reference :
Correct Query: true_query
1. Excellent: this is only given when the SQL query is perfect and matches
{true_query}
2. Good: This is when there is a grammar mistake in the query
3. Above average: This is when the query is mostly correct but gets a logical
step wrong in the query
4. Bad: Makes more than one mistake in the query
5. Very bad: does not produce a query or varies significantly from the correct
query
Queries to grade: queries_to_rank
{format_instructions}

C Implementation Details

In our experiments, we utilize VERL5 for training
the 14B models. To enhance efficiency, Unsloth6

is employed for the 7B and 8B models. Unsloth
provides support for QLoRA-style training with
Flash Attention 2, bitsandbytes quantization, and
PEFT-compatible adapters.

We fine-tuned three pretrained models:

5https://GitHub.com/volcengine/verl
6https://GitHub.com/unslothai/unsloth

• Qwen-2.5-7B, a dense, instruction-tuned
model released by Alibaba DAMO, trained
in full precision 7.

• Qwen-2.5-14B, a larger, dense, instruction-
tuned model released by Alibaba DAMO,
trained in full precision 8.

• DeepSeek-R1-Distill LLaMA3-8B, a 4-bit
quantized variant of Meta’s LLaMA 3–8B,
distilled by DeepSeek AI9.

Supervised fine-tuning (SFT) was performed on
the Clinton dataset using QLoRA adapters, while
reinforcement learning with GRPO was applied on
the BIRD benchmark. The GRPO setup used can-
didate comparisons and execution-guided rewards
computed via SQLite.

Experiments were conducted on 4×A100 80GB
GPUs using mixed-precision (FP16).

7https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

8https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

9https://huggingface.co/unsloth/
DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit
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